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Abstract 

Background  Novel interventions for mosquito-borne disease control which release modified mosquitoes that are 
sterilised or genetically modified to cause offspring inviability are progressing towards field applications. Cluster 
randomised control trials (CRCTs) could provide robust assessment of intervention efficacy in suppressing mos‑
quito populations in field environments, but guidance on designing CRCTs to detect mosquito suppression impacts 
is limited.

Results  We developed statistical models to simulate CRCTs, informed by a 5-year time series measuring densi‑
ties of malaria vector species from the Anopheles gambiae complex in four villages in western Burkina Faso. We 
estimated requirements for parallel and step wedge designs, varying the targeted vector species, the suppression 
effect and the monitoring regime. For a suppression effect of 50%, 21–22 clusters were required to detect suppres‑
sion with 90% power when all An. gambiae complex species were targeted, while 24–26 clusters were required 
when only An. coluzzii was targeted and 60–66 clusters were required when only An. gambiae was targeted. 
For stronger suppression effects, required trial sizes depended less on target species, with 9–10 clusters being suf‑
ficient to detect a 90% suppression effect. We investigated how reducing sampling effort, by sampling fewer houses 
and restricting sampling to rainy season months, affected statistical power.

Conclusions  Our results provide empirically based guidance for designing CRCTs to evaluate interventions aiming 
to suppress malaria vector populations.

Keywords  Cluster randomised control trials, Gene drive, Geostatistical model, Malaria, Vector control, Sterile insect 
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Background
Many strategies for controlling mosquito disease vec-
tors act by suppressing vector populations. Interventions 
that use chemical insecticides to target adult mosquito 
life stages, including insecticide treated bednets (ITNs), 
indoor residual spraying (IRS) and outdoor ‘space’ spray-
ing, have played a critical role in disease control over sev-
eral decades [1, 2], and remain important today. These 
interventions are, however, currently threatened by the 
widespread emergence of insecticide resistance in vector 
populations [3], and thus a wider range of vector control 
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tools is needed to achieve progress in mosquito-borne 
disease control and elimination, including novel technol-
ogies [4].

Strategies for suppressing vector populations involv-
ing field releases of modified adult male mosquitoes are 
increasingly being developed and deployed. Releases 
of males which are sterilised through irradiation [5], or 
genetically modified such that their offspring are invi-
able [6], have been trialled in a number of global regions 
since the 1970s [5, 7, 8]. Recently, in Singapore, releases 
of male Ae. aegypti mosquitoes infected with a strain of 
Wolbachia bacteria that causes matings with uninfected 
females to produce inviable offspring have achieved sub-
stantial reductions in dengue cases [9].

To effectively suppress vector populations, the above 
strategies require large numbers of males to be reared 
in mass rearing facilities and released [9, 10]. This issue 
may be overcome by novel approaches where modi-
fied genes are inherited across successive generations 
of the mosquito population following release, causing 
more sustained suppression. A suite of approaches with 
diverse underlying genetic mechanisms, technological 
implementations and potential impacts on mosquito 
populations have been proposed [11–14]. Some strate-
gies are ‘self-limiting’ [11], whereby the released genes 
persist for a small number of generations before being 
lost from the population. For example, the Friendly™ 
technology developed by Oxitec, which produces geneti-
cally modified (GM) male mosquitoes whose matings 
with wild females produce inviable female offspring 
(male offspring survive), has recently been released in 
Djibouti in the invasive malaria vector An. stephensi 
[15]. At the other end of the spectrum, ‘low-threshold’ 
gene drive technologies are being investigated [11], 
whereby the released genes could potentially increase 
in frequency across successive generations and spread 
indefinitely throughout populations of the targeted mos-
quito species [16]. For instance, a gene drive that con-
fers sterility in homozygous females has been shown to 
spread and induce the complete suppression of large 
cage populations of the malaria vector Anopheles gam-
biae [17]. Field trials of low-threshold gene drives are 
currently being actively considered [18].

Compared to mainstay insecticide-based interven-
tions like ITNs and IRS, the efficacy of mosquito release 
strategies for vector population suppression, such as 
SIT, self-limiting GM mosquito releases and gene drive 
releases, is not yet well understood. Cluster randomised 
control trials (CRCTs) are the gold standard methodol-
ogy for robust quantification of the efficacy of public 
health interventions that impact disease outcomes across 
whole communities [19] and are commonly used to sup-
port applications for World Health Organisation (WHO) 

approval for intervention rollout [20]. CRCTs randomise 
the allocation of an intervention across a series of com-
munities, or clusters, with those not receiving the inter-
vention acting as controls [19]. Several CRCTs have been 
conducted to promote the scaling up of chemical insecti-
cide-based interventions for vector control [21–24], but 
most trials of mosquito release interventions for popula-
tion suppression have been smaller scale pilot trials [7]. 
More recently, larger trials releasing Wolbachia-infected 
male mosquitoes compared several treatment and con-
trol locations and demonstrated substantial impacts on 
vector suppression and disease incidence, although the 
designs did not randomise the allocation of treatment 
and control sites [9, 25].

Mosquito release interventions target wild populations 
of particular vector species by rearing and releasing mod-
ified mosquitoes of these species. The majority of trials 
conducted thus far have investigated mosquito releases 
in the Aedes genus, which transmit arboviruses such as 
the dengue, Zika, yellow fever and chikungunya viruses. 
Relatively few trials have conducted mosquito releases in 
Anopheles malaria vector species [7]. In Africa, malaria 
vectors include seven species from the An. gambiae com-
plex [26, 27], as well as An. funestus and the invasive spe-
cies An. stephensi, with cryptic species also implicated in 
transmission [28]. Epidemiological impacts will therefore 
depend on the abundance of the targeted vector species 
relative to that of other non-target vector species present 
in the area [29]. Thus, we need to understand the direct 
impacts of mosquito release interventions in suppressing 
populations of targeted vector species to estimate their 
potential efficacy and how this varies across different 
environments.

There is a lack of CRCTs of malaria vector control 
interventions that consider vector population suppres-
sion as their primary endpoint, although several have 
assessed suppression as a secondary endpoint [30–32]. 
Vector densities can be highly variable [33, 34], logisti-
cally intensive to monitor and dependent on the col-
lection method [35]. Potentially high variability in the 
densities of the vector species targeted by the inter-
vention may mean that large trial sizes are required to 
robustly detect vector population suppression effects 
with sufficient statistical power [19].

Large CRCTs for novel mosquito release interven-
tions may be logistically challenging, requiring signifi-
cant stakeholder engagement which could be difficult 
to coordinate when releasing in many clusters simul-
taneously. However, for interventions where modified 
genes persist in wild mosquito populations following 
releases, smaller pilot trials could still affect large areas 
if the modified genes diffuse spatially [18]. Step wedge 
CRCT designs, where the initiation of the intervention 
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is staggered such that some clusters receive the inter-
vention later than others, could possibly enable robust 
assessment of intervention efficacy while allowing the 
intervention to initially be applied in a small number 
of clusters.

To support the design of trials to evaluate novel mos-
quito release interventions for malaria control, we 
develop statistical models to simulate data obtained 
from CRCTs aiming to detect suppression in the num-
bers of adult Anopheles malaria vectors resulting from 
a vector control intervention. Our models are informed 
by a 5-year time series of malaria vector density meas-
urements obtained using pyrethrum spray catch (PSC) 
methods conducted in four villages in south west Bur-
kina Faso, which recorded densities of three major vec-
tor species from the An. gambiae complex (An. gambiae, 
An. coluzzii and An. arabiensis). Mosquitoes were col-
lected in all months of the year, typically at 20 geolocated 
houses per village, allowing spatiotemporal variability in 
mosquito counts to be characterised. We compare simu-
lated CRCTs where different vector species are targeted 
by the intervention, considering a range of trial designs, 
suppression effect sizes and monitoring intensities. Our 
results provide empirically based estimates of statistical 
power that can inform the design of upcoming field tri-
als aiming to obtain robust estimates of malaria vector 
population suppression impacts.

Results
Simulating mosquito counts across space and time
We fitted a spatiotemporal geostatistical model to counts 
of mosquito species from the An. gambiae complex col-
lected by PSC from each house, village and month over 
a 5-year period covering July 2012 to July 2014 and Janu-
ary 2017 to December 2019. Collections were made from 
four villages all within 30  km of Bobo Dioulasso: Bana 
centre, Bana market, Pala and Souroukoudingan [36]. 
Typically, 20 houses per month were sampled in Bana 
centre, Pala and Souroukoudingan, and 6 houses per 
month were sampled in the smaller settlement of Bana 
market, with missing records in some months (see the 
“Methods” section).

Simulations from the posterior of the fitted model (see 
the “Methods” section) captured monthly and seasonal 
variation in the total number of mosquitoes caught in 
each village (Fig.  1). The posterior predictive distribu-
tion of the mosquito counts per house agreed well with 
the observed distribution (Fig. 2). The fitted geostatistical 
model indicated significant overdispersion of mosquito 
counts across both houses and villages (Table 1). Signifi-
cant spatial and temporal autocorrelation was also iden-
tified, notably with negative temporal autocorrelation 
in mosquito counts across months (Table  1). Predictive 

maps generated by the geostatistical model suggest that 
the locations where high mosquito counts occur are not 
consistent over time (Additional file  1: Figs. S6, S7 and 
S8) [37–40], with locations tending to switch from having 
high counts to low counts between consecutive months 
(Additional file 1: Fig. S9).

Molecular identification of collected An. gambiae com-
plex mosquito species was performed in the years 2017–
2019 only (see the “Methods” section). The vast majority 
(93.5%) of the collected An. gambiae complex species 
were identified as either An. gambiae or An. coluzzii (see 
the “Methods” section). Simulations from the posterior 
of the number of mosquitoes of each species in each vil-
lage and month (see the “Methods” section) reflect the 
high heterogeneity in species composition between the 
four villages (Fig. 3). Bana and Bana Market showed con-
sistently higher numbers of An. coluzzii relative to An. 
gambiae throughout the period (Fig. 3). In Pala there was 
typically more An. gambiae than An. coluzzii, although 
there is overlap in the posterior distributions of the 
monthly counts between the two species. In Sourouk-
oudingan, estimated proportions of the two species are 
more similar, with higher numbers of An. coluzzii than 
An. gambiae on average.

Statistical power to detect vector population suppression
We simulated CRCT data sets for trials lasting two years 
preceded by 1  year of baseline data collection by draw-
ing counts of collected mosquitoes per house, month and 
cluster from the posterior distribution of the fitted geo-
statistical model (see the “Methods” section; Eqs.  1 and 
2). We simulated counts of all mosquitoes that were mor-
phologically identified as belonging to the An. gambiae 
complex, and counts disaggregated by species for the two 
predominant species, An. gambiae and An. coluzzii (see 
the “Methods” section; Eq. 5).

We modelled two types of CRCT design, including par-
allel and step wedge designs (see the “Methods” section), 
and estimated the statistical power to detect a propor-
tional reduction in mosquito counts, G, in the interven-
tion compared to the control clusters. We considered 
three suppression effects, setting G to 50%, 70% and 90%. 
To represent mosquito release interventions targeting 
multiple species or only a single species, we compared 
cases where suppression acted on all An. gambiae com-
plex species (including An. gambiae, An. coluzzii and An. 
arabiensis), An. gambiae only, or An. coluzzii only. Our 
statistical analyses adjusted for baseline counts of the tar-
get vector species (see the “Methods” section). We note 
that our estimates of statistical power are stochastic, and 
our estimates of minimum trial sizes required to achieve 
a given statistical power are not exact.
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For the smaller suppression effects (G = 50% and 
G = 70%), power depended on which vector species were 
targeted by the suppression effect (Fig.  4). Power was 
lowest when suppression acted on An. gambiae only 
(Fig. 4A–D). Power was similar when suppression acted 
on all three vector species compared to when suppres-
sion acted on An. coluzzii only, noting that targeting only 
An. coluzzii resulted in small decreases in power for the 
smallest suppression effect (G = 50%). For a suppression 
effect of 50% acting on all vector species, 90% power was 
achieved for 7 clusters per sequence (Cs) for the step 
wedge trial design and 11 clusters per arm (CA) for the 
parallel trial design. When this suppression effect acted 
on An. coluzzii only, the step wedge design required 8 
clusters per sequence to achieve 90% power and the par-
allel design required 13 clusters per arm. When suppres-
sion acted only on An. gambiae, the step wedge design 
required 22 clusters per sequence to achieve 90% power 

and the parallel design required 30 clusters per arm. 
Overall, the step wedge and parallel trial designs showed 
very similar efficiency, noting that the step wedge trial 
design has three sequences of Cs clusters per sequence 
and the parallel design has two arms of CA clusters per 
arm (see the “Methods” section).

The larger trial sizes required when only An. gambiae 
experienced suppression can be explained by the rela-
tively low numbers of An. gambiae collected, particularly 
in Bana centre and Bana market, where no An. gambiae 
were collected in a high proportion of houses (Additional 
file  1: Fig. S4). The relatively high proportion of zero 
counts for this species makes suppression effects more 
difficult to detect.

For stronger suppression effects, smaller trial sizes 
were required for 90% power, and there was less differ-
ence in required trial sizes depending on which vec-
tor species were targeted (Fig.  4). When suppression of 

Fig. 1  Posterior samples of the predicted number of mosquitoes collected in each month, year and village compared to observed values. 
Lines show sixty random draws from the posterior distribution predicted by the geostatistical model, and markers show the data on numbers 
of mosquitoes collected. The geostatistical model (Eq. 1) has 5 fitted parameters
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G = 90% occurred, 90% power was achieved for the mini-
mum trial size considered (Cs = 3 or CA = 5), regardless of 
which vector species experienced the suppression effect 
(Fig. 4E, F).

Effects of alternative monitoring strategies on statistical 
power
We explored the effects of alternative monitoring strat-
egies on required trial sizes, including restricting PSC 
sample collection to the rainy season months (May–
October) and varying the number of houses sampled in 
each monthly collection (see the “Methods” section).

Sampling during the rainy season only
Restricting PSC collections to the rainy season had 
nuanced effects on statistical power. When the low-
est suppression effect (G = 50%) was experienced by all 
An. gambiae complex species, power increased when 
sampling was restricted to the rainy season for both 
step wedge and parallel designs (Fig.  5A, B). For the 
step wedge design, the required trial size for 90% power 
reduced from 7 to 5 clusters per sequence, and for the 
parallel design, the required trial size reduced from 11 
to 7 clusters per arm. Mosquito counts in the rainy sea-
son are much higher than in the dry season (Fig.  1), so 
including dry season counts in the effect size estimation 
can increase the intercluster variation, despite the higher 
cluster sample sizes.

However, if the suppression effect targeted An. 
coluzzii only, restricting sampling to the rainy sea-
son reduced power (Fig.  5C, D). For the step wedge 
design, the required trial size for 90% power increased 
from 7 to 11 clusters per sequence, and for the paral-
lel design, the required trial size increased from 13 
to 20 clusters per arm. Restricting sampling to rainy 
season months did not affect power when the sup-
pression effect targeted only An. gambiae (Fig.  5E, F). 
Thus, restricting sampling to the rainy season was only 
detrimental when An. coluzzii was the sole target of 
the suppression effect. An. coluzzii was present in the 
dry season months, with substantially higher dry sea-
son counts than An. gambiae in Bana and Bana mar-
ket, and dry season sampling improved power to detect 
suppression. This could be because there were several 
houses with missing genotypic data (Additional file  1: 
Fig. S3), which reduced the cluster sample sizes for 
species-specific counts. Rainy season-only sampling 
further reduced sample sizes to the detriment of sta-
tistical power to detect suppression when An. coluzzii 
was the target species. This effect was not seen when 
all species experienced suppression because there were 
larger cluster sample sizes and less missing data on PSC 
counts of all An. gambiae complex species.

Fig. 2  A Q-Q plot showing the quantiles of the observed total 
mosquito counts versus the quantiles of the posterior mean fitted 
values of the mosquito counts in each house, month and village. 
Black circles show the sequence of 41 quantiles increasing from zero 
to one at evenly spaced intervals of 0.025. The grey shaded 
region shows the area of the graph corresponding to a linear 
scale on both axes, with the remaining area showing a log scale 
on both axes

Table 1  Parameters of the spatiotemporal geostatistical model fitted to the counts of mosquitoes collected by PSC

Parameter Mode 0.025% CI 97.5% CI

Range of spatial autocorrelation (r) 0.0018 (° N) 0.0016 (° N) 0.0021 (° N)

Standard deviation of spatially-correlated random effect ( σ 2
ω) 4.83

(log(no.mosquitoes))
4.17
(log(no.mosquitoes))

5.90
(log(no.mosquitoes))

Monthly temporal autocorrelation ( ρ)  − 0.67  − 0.78  − 0.54

Standard deviation of the house level random effect ( νh) 0.71
(log(no.mosquitoes))

0.66
(log(no.mosquitoes))

0.77
(log(no.mosquitoes))

Standard deviation of the village level random effect ( µv) 1.0
(log(no.mosquitoes))

0.88
(log(no.mosquitoes))

1.14
(log(no.mosquitoes))
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When the suppression effect was G = 70%, rainy sea-
son-only sampling had much smaller impacts on power 
(Additional file  1: Fig. S10). Reductions in power again 
occurred when An. coluzzii was the only species targeted, 
with negligible impacts when either An. gambiae or all 
three vector species experienced suppression. A suppres-
sion effect of G = 90% was sufficiently strong that restrict-
ing PSC collections to the rainy season months had no 
impact on statistical power, regardless of whether all 
species or only a single species experienced suppression 
(Additional file 1: Fig. S11).

Varying the number of houses sampled
The number of clusters required to provide 90% power 
to detect vector population suppression plateaued as the 
number of houses sampled in each cluster per month 
increased (Fig.  6). For the lowest suppression effect 
(G = 50%), using the step wedge design, required trial 
sizes plateaued when ten or more houses per month were 
sampled (Fig.  6A). Using the parallel design, required 
trial sizes also plateaued at ten houses per month, except 
when An. gambiae was the only vector species targeted 

by the suppression effect—in this case, required trial 
sizes plateaued when twenty or more houses per month 
were sampled (Fig.  6B). For the parallel design, more 
houses needed to be sampled to detect suppression act-
ing on An. gambiae because PSC collections of An. gam-
biae contained fewer mosquitoes (Fig. 3). Under the step 
wedge design, however, required trial sizes plateaued at 
ten houses per month when An. gambiae was the only 
species targeted. This suggests that, for the step wedge 
design, statistical power is more robust to reductions in 
cluster sample sizes compared to the parallel design.

For a higher suppression effect of G = 70%, required 
trial sizes plateaued when five or more houses per month 
were sampled, for both parallel and step wedge designs, 
regardless of which species were considered as targets. 
When G was increased to 90%, required trial sizes pla-
teaued when only one house per month was sampled 
when either all species were targeted by the suppression 
effect or when only An. coluzzii was targeted. However, 
when only An. gambiae was targeted, required trial sizes 
plateaued when five or more houses per month were 
sampled.

Fig. 3  Posterior samples of the predicted number of mosquitoes of each species collected in each month, year and village compared to observed 
values. Black lines show sixty random draws from the posterior distribution of the numbers of An. coluzzii predicted by the geostatistical model 
(Eq. 5) and black markers show the expected value of the number collected ( pchmvyhmv ). Red lines and markers show corresponding values 
for the numbers of An. gambiae collected. The geostatistical model (Eq. 1) has 5 fitted parameters
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Discussion
We developed statistical models to simulate data sets 
generated by CRCTs of interventions that suppress 
densities of adult malaria vectors, aiming to identify 
trial designs that achieve high statistical power with 

minimal sampling effort. Our models captured patterns 
of spatiotemporal variability observed in a five-year 
time series of malaria vector density measurements 
obtained in rural Burkina Faso, and thus provide empir-
ically based estimates of statistical power. Statistical 

Fig. 4  The power to detect a suppression effect G acting on targeted vector species. Blue square markers show the power when all An. gambiae 
complex species (An. gambiae, An. coluzzii and An. arabiensis) experience the suppression effect. Red asterisks and black circles show power values 
when only An. coluzzii (red markers) or only An. gambiae (black markers) are suppressed. Dotted lines show the 90% power threshold. Suppression 
effects of 50% (row A–B), 70% (row C–D) and 90% (row E–F) are shown. Both step wedge designs (column A, C, E) and parallel designs (column B, 
D, F) were modelled
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power depended on which vector species (within the 
An. gambiae complex) experienced the suppression 
effect of the intervention. Of the three vector species 
identified, An. coluzzii was most abundant in the PSC 
collections, and power was similar when suppression 
acted only on An. coluzzii to when suppression acted on 
all three vector species, provided the sampling protocol 
followed that used in the PSC collections [36]. When 
An. gambiae was the sole target of the suppression 
effect, power was substantially lower. Moreover, when 
An. coluzzii was the only species experiencing suppres-
sion, power was less robust to reducing sampling effort 
by restricting PSC collections to rainy season months. 
This was likely due to the substantial number of houses 
with missing data for genotyped mosquito samples, 
highlighting the additional challenges and resource 
requirements associated with monitoring densities of 
specific species within the An. gambiae complex.

There is potential for mosquito release strategies for 
population suppression to be developed in multiple 

malaria vector species. For example, gene drives that 
spread genes causing female infertility by targeting a 
female-specific exon in the doublesex gene are cur-
rently being developed in An. gambiae and An. coluzzii 
[17, 41, 42]. Strategies involving releasing sterile males 
without the onwards spread of modified genes through 
to the next generation, known as the sterile insect tech-
nique (SIT), have been investigated in An. gambiae [43], 
An. coluzzii [44] and An. arabiensis [45]. Outstanding 
challenges include developing efficient sex-separation 
methods in mass-reared mosquito colonies prior to male 
releases [42, 45, 46] and rearing males that will effectively 
compete with wild counterparts in mating [44]. Impor-
tantly, the ability of mosquito release interventions to tar-
get multiple malaria vector species will be critical to their 
efficacy in reducing human malaria cases [29], which is a 
strong motivation for overcoming the associated techni-
cal and logistical challenges.

We also obtained estimates of trial size requirements 
for a range of mosquito collection sampling regimes, in 

Fig. 5  The effect sampling only during the rainy season (May–October) on the power to detect a suppression effect G acting on all An. gambiae 
complex species (An. gambiae, An. coluzzii and An. arabiensis). Power values when collections were made in all months of the year (black circles) 
and only the rainy season months (yellow squares) are shown. Results for suppression effects of G = 50% are shown. Dotted lines show the 90% 
power threshold. Rows show results when suppression affects all vector species (A, B), An. coluzzii only (C, D) and An. gambiae only (E, F). Both step 
wedge (column A, C, E) and parallel (column B, D, F) designs were modelled
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terms of the number of houses sampled from each vil-
lage, and the times of year in which sampling occurs. 
Statistical power plateaued as the number of houses 
sampled per village increased, and we found that more 
houses were sampled in the PSC data set than were 
needed for approximately equivalent statistical power to 
detect vector suppression across the range considered, 
with 1–10 houses per village being sufficient in almost 
all cases. This small requirement on cluster sample sizes 
indicates that the precision of the estimated intervention 

effect is primarily determined by variation in mosquito 
counts between, rather than within, clusters. Our analy-
ses considered trials with small numbers of clusters (typi-
cally < 60 clusters), and thus, we used simple analyses for 
estimating the intervention effect that did not consider 
sources of within-cluster variability in mosquito counts 
across houses [19]. Our geostatistical models indicated 
variable spatial distributions of mosquito counts within 
villages between months, with a lack of temporal consist-
ency in the locations showing high mosquito numbers. 

Fig. 6  The effect of varying the number of houses sampled in each cluster per month on the number of clusters required to attain 90% 
power to detect a suppression effect G. Required cluster numbers when all An. gambiae complex species (blue lines and markers) experienced 
suppression, only An. coluzzii (red lines and markers) and only An. gambiae (black lines and markers) experienced suppression are shown. Results 
for suppression effects of G = 50% (A, B), G = 70% (C,D) and G = 90% (E, F) are shown. Both step-wedge (column A, C, E) and parallel (column B, 
D, F) designs were modelled. When only An. gambiae experienced the lowest suppression effect (G = 50%), sampling only one house per cluster 
was insufficient to attain 90% power for all trial sizes considered (results not shown). Mosquito collections are assumed to occur in all months 
of the year
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This suggests that the inclusion of house-level variables 
may not contribute greatly to the explanatory power of 
the analyses, even if more detailed models were used. 
Interestingly, we found a negative temporal autocorrela-
tion in the mosquito counts per house, which may pos-
sibly be due to a sustained effect of the PSC activity on 
mosquito densities in the house.

Our statistical model for estimating intervention 
effects adjusted for baseline data on counts of the target 
vector species by including a year of baseline data col-
lection in our simulated data sets. Adjusting for baseline 
covariates that are predictive of the outcome of interest 
is recommended when there is variation between clusters 
with respect to these covariates [19, 47]. In the PSC data, 
mosquito counts and vector species composition were 
strongly variable across study sites. When we repeated 
our analyses without adjusting for baseline counts, power 
was greatly reduced (Additional file  1: Fig. S12). Thus, 
our results advocate for collecting baseline data in tri-
als to assess suppression effects in species from the An. 
gambiae complex. In real trials, restricted randomisation 
approaches could alternatively be used to reduce imbal-
ance across clusters [19]. Our statistical models repre-
senting variability in collections of An. gambiae complex 
mosquitoes are based on spatiotemporal data from four 
villages, limiting their ability to describe variability across 
a larger set of locations. We note, however, that collec-
tions took place over a five-year time period, so some 
variability due to changing conditions is captured. None-
theless, we did not attempt to model restricted randomi-
sation due to the limited number of clusters sampled in 
the PSC collections. In designing real trials, we recom-
mend conducting baseline monitoring of vector densities 
over the full set of sites participating in the trial to assess 
whether intercluster variability deviates from the values 
observed in our data. Models could then be refitted to 
obtain updated estimates of trial design requirements.

We found that the parallel and step wedge designs were 
similarly efficient in terms of required numbers of clus-
ters. Other studies have compared the efficiency of step 
wedge and parallel designs and found that either design 
can sometimes be more efficient, depending on the num-
ber of clusters, cluster sample sizes, and the level of inter-
cluster correlation [48, 49]. For step wedge trials with 
larger trial sizes, analyses can gain power from longitu-
dinal (before-and-after) comparisons within clusters [50], 
which are not taken into account by within-period analy-
ses, which are recommended for small trial sizes [51–53]. 
Here we have used within-period analyses with adjust-
ment for cluster-level mosquito counts at baseline. We 
note that analyses of step wedge designs can be biased 
if any secular temporal trends in the outcome measure-
ments are not accurately accounted for [52, 53], and our 

simulation study did not incorporate or consider impacts 
of secular trends.

Our analyses considered only the female mosquitoes 
that were collected by PSC, but males were also col-
lected and could potentially inform estimation of sup-
pression effects. We did not include the counts of male 
mosquitoes because males have a lower propensity to 
rest indoors than females [54] and PSC collections may 
be less representative of true male densities. Power could 
be potentially increased by developing independent geo-
statistical models for the male and female counts and 
simulating CRCTs representing suppression impacts 
on both sexes, which could then be analysed jointly. 
Female malaria vectors do bite humans outdoors, and an 
increase in outdoor biting propensity has been observed 
in some areas following widespread use of indoor insec-
ticidal interventions [55]. PSC methods capture only 
indoor resting mosquitoes and do not represent outdoor 
biting vector populations, which is a limitation of using 
PSC for measuring mosquito densities.

Our assumption of a temporally constant suppres-
sion effect is a simplification of the impacts of mosquito 
release interventions, which will inevitably cause tem-
porally varying suppression effects. We have assumed a 
Poisson model of mosquito counts, whereby the suppres-
sion intervention linearly reduces the variance in mos-
quito counts. The nature of the variability associated with 
the suppression effect will be specific to the interven-
tion and the intensity of the releases. Extensions of our 
analyses to incorporate time-varying suppression effects 
will be important to consider and could be informed by 
predictions of mechanistic models of vector population 
dynamics (e.g. [56, 57]). We note, however, that we model 
CRCTs where the endpoint is average suppression across 
a two-year time period, rather than temporal variation in 
suppression throughout the trial. Thus, our results are a 
parsimonious representation of vector suppression and 
constitute a necessary first step.

Our analysis also did not consider potential spillover of 
the intervention into control clusters [58], which could 
occur with mosquito release interventions that introduce 
spatially spreading modifications, such as gene drives. 
Spillover effects could be mitigated by geographic sepa-
ration of clusters to allow for buffer zones [19], although 
there are challenges involved in estimating the required 
size of the buffer zones a priori. Alternatively, a CRCT of 
Wolbachia releases in Ae. aegypti in Yogyakarta, Indone-
sia, allowed for spillover based on calculations showing 
minimal effects on statistical power [59]. Further model-
ling research to estimate the impacts of spillover on trial 
design requirements will be needed to inform first field 
trials of spatially spreading interventions such as novel 
low-threshold gene drives.
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When released modified genes persist in wild mosquito 
populations for many generations, as is anticipated with 
low-threshold gene drives, they could potentially intro-
gress into closely related species through hybridisation. 
This could occur between the sibling species An. coluzzii 
and An. gambiae, which are known to hybridise in the 
wild [60]. It is uncertain whether this would occur within 
the duration of a CRCT, and it will be important for trials 
of gene drive releases to include monitoring to detect the 
modified gene in closely related species that could poten-
tially hybridise with the released species [18].

Conclusions
Our modelling analyses characterise CRCTs for detect-
ing malaria vector population suppression by estimating 
trial size requirements for a range of trial designs, vec-
tor species targets, suppression efficacies and sampling 
strategies. Several novel mosquito release interventions 
for malaria control are currently progressing towards 
field applications, but their efficacy in vector popula-
tion suppression has not yet been rigorously assessed 
using CRCT methods. CRCT approaches will likely be 
important tools in developing a robust understanding 
of suppression efficacy and optimising release strategies. 
Encouragingly, our results indicate that large CRCTs are 
not necessary to provide statistically powered estimates 
of moderate to high suppression effects.

Methods
Time series of mosquito density measurements
From July 2012 to July 2014 and from January 2017 to 
December 2019, indoor resting mosquitoes were col-
lected each month from housing compounds in four vil-
lages near Bobo Dioulasso: Bana centre, Bana market, 
Pala and Souroukoudingan [36, 61]. These villages are all 
within 30 km of Bobo Dioulasso, with Bana Market being 
a peripheral district of Bana that is separated from Bana 
Center by a semi-permanent river [36]. A high coverage 
of ITNs in the region has been reported in recent years 
[36]. Mosquitoes were collected using pyrethrum spray 
catches (PSC); details of the mosquito collection proce-
dures are provided in Epopa et  al. [36]. In summary, in 
Bana, Pala and Souroukoudingan, twenty houses in each 
village were sprayed per month, while in the smaller set-
tlement of Bana Market six houses were sprayed per 
month. For each house, the spray date and GPS (Global 
Positioning System) positions were recorded. Of the 
twenty houses, ten were selected at random each month 
from each village, and a fixed set of ten houses in each 
village were repeatedly sampled each month. In Bana 
Market, all sampled houses were within a fixed set of 
houses that were repeatedly sampled each month. The 
fixed houses were spread to represent the geography and 

extent of each village. For some months, there are some 
missing records, and count data for less than twenty 
houses is available, or less than six houses in the case of 
Bana Market (Additional file 1: Fig. S2).

In this study we use data on counts of collected mos-
quito species from the An. gambiae complex, which were 
identified morphologically. From January 2017 onwards, 
a subset of ninety mosquitoes identified as members of 
the An. gambiae complex were retained from each vil-
lage’s monthly collection for species identification by 
Polymerase Chain Reaction (PCR) [62]. The retained 
samples were selected at random from the total catch 
in each house, where the number retained per house 
was proportional to the total catch in each house. This 
ensured that the samples of specimens retained for spe-
cies identification were representative of the full data set 
at the house level. For some months, species identifica-
tion failed for some of the collected mosquitoes, so the 
data set contains missing information on species for 
some samples (Additional file 1: Fig. S3). Of the species 
identified from the An. gambiae complex, the vast major-
ity were either An. gambiae or An. coluzzii, with An. ara-
biensis making up 6.5% of all samples identified. Vector 
species composition was found to differ markedly across 
the four villages. In Bana and Bana market, about 93% of 
all collected mosquitoes from the An. gambiae complex 
were identified as An. coluzzii. In Souroukoudingan, 57% 
were An. coluzzii and in Pala 19% were An. coluzzii [36].

Geostatistical models of mosquito counts
We fitted a Bayesian spatiotemporal geostatistical model 
to the counts of adult female mosquitoes in each house 
to estimate the patterns of variability in the counts across 
houses, villages and months of the year, accounting for 
spatiotemporal autocorrelation in the count data. We 
modelled the counts of only female, and not male, mos-
quitoes, because PSC data is likely to better represent 
female vector densities, as males have a lower propensity 
to rest indoors [54] (see the “Discussion” section). We 
model the number of female mosquitoes from the An. 
gambiae complex collected in each house, h, month, m, 
and village, v, denoted yhmv , as a Poisson distribution:

The linear predictor is modelled using a Gaussian pro-
cess regression formulation:

where xh is the location of house h (in World Geodetic 
System (WGS)) 84 latitude and longitude coordinates), 
f (xh,m) is a multivariate Gaussian process modelled 
by a spatiotemporal Gaussian Markov Random Field 

(1)yhmv ∼ Pois �hmv f xh,m , θ

(2)log (�hmv) = f
(
xh,m

)
+ µv + vh
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(GMRF), and µv and νh are independently distributed 
Gaussian random effects representing overdispersion 
at the village and house levels, respectively. We define a 
Bayesian hierarchical formulation for the model using a 
vector of prior probability distributions for the hyper-
parameters θ = [ψ , σv , σh] , where ψ are the parameters 
of f (xh,m) (see Additional file 1), and σv and σh are the 
standard deviations of the Gaussian random effects µv 
and νh . Posterior distributions of f (xh,m) , µv and νh were 
then estimated by fitting the model using the R-INLA 
package [39], which approximates f (xh,m) using a sto-
chastic partial differential equation (SPDE) approach 
[63]. This involves solving for f (xh,m) at a discrete set of 
points which are the nodes of a mesh constructed using 
a Delauney triangulation. We constructed a mesh cov-
ering an area encompassing all four villages, with a fine 
resolution within the area of each village and a coarse 
resolution elsewhere (Additional file 1: Fig. S1). Code for 
implementing the geostatistical models developed in our 
study using R-INLA is available on GitHub [64].

Simulating field trials to detect mosquito population 
suppression
We simulate data sets representing CRCTs aiming to 
detect suppression of a targeted mosquito vector spe-
cies resulting from a vector control intervention, assum-
ing a constant suppression effect G throughout the trial 
period. We considered two approaches to CRCT design, 
including a parallel and a step wedge design. While par-
allel CRCTs are the standard approach used in trials of 
vector control interventions, step wedge designs allow 
the times of intervention implementation in each cluster 
to be staggered, such that some clusters receive the inter-
vention at later times than others. This may be preferable 
for novel strategies involving releasing GM mosquitoes 
and gene drives, which have not yet been tested in the 
field.

For both approaches, we simulated data for a set of 
treatment and control clusters, assuming that a cluster 
is represented by a village, and that mosquito count data 
are collected from each cluster following the same proto-
col as that used in the PSC collections for the four study 
villages. Thus, the number of houses sampled in each 
cluster, month and year is assumed to be equal to that for 
which PSC data was obtained (below we describe a modi-
fication where the number of houses per cluster is var-
ied). For each cluster, we simulated the number of female 
mosquitoes collected from each house h and month m 
by drawing from the posterior distributions of f (xh,m) , 
µv and νh obtained from the fitted spatiotemporal model. 
The simulated counts ỹshmv were then given by drawing 
from a Poisson distribution with a mean of

where f̃ s(xh,m) is the sth random draw from the pos-
terior distribution of f (xh,m) , and similarly µ̃s

v , and ν̃sh are 
random draws from the fitted posterior distributions of 
these random effects. We simulate a number of data sets, 
S, denoting s = 1,…,S as the simulation index. Code and 
vignettes for generated the simulated data sets is avail-
able on Github [64].

Simulating parallel CRCT designs
We simulated data sets for parallel designs where clusters 
are randomly allocated to receive the intervention or to 
act as controls, with all the intervention clusters receiv-
ing the intervention simultaneously. We assume a bal-
anced design with equal numbers of clusters per arm, CA. 
We consider trials lasting two years, where the simulated 
data for each year is obtained by selecting random poste-
rior draws of counts ỹshmv for all months in each year (we 
also consider cases where only rainy season months are 
sampled, see below). We assume here that the interven-
tion targets all An. gambiae complex species recorded in 
the PSC collections (simulations assuming only a single 
vector species is targeted are considered below). Thus, 
for treatment clusters, we multiply ỹshmv by a factor 1− G, 
where G is the assumed level of suppression of the tar-
get vector population. We also simulate a year of pre-trial 
baseline data collection, whereby mosquito counts ỹshmv 
are drawn for all clusters for all months in a single year, 
and no clusters experience the suppression effect. We 
note that the locations of the houses for which counts 
ỹshmv are simulated vary across years following the sam-
pling patterns in the PSC data set, which had missing 
records for some houses in certain months and years (see 
Additional file 1).

For each simulated data set s, we then obtain an esti-
mate of the suppression effect G by performing a linear 
regression on cluster-level summaries of the logarithm of 
the mean number of mosquitoes collected per house in 
each cluster, where the log transform is applied to reduce 
skewness in the cluster-level counts [19]. We based our 
inference on cluster-level summaries because our field 
trial simulations consider small numbers of clusters [19]. 
We used the following regression model to estimate the 
suppression effect G, adjusting for the total cluster-level 
mosquito counts at baseline:

where, for simulated data set s, Y s
v is the mean number 

of mosquitoes per house collected from village v over the 
course of the two-year trial period, I s is a binary variable 

(3)�̃
s
hmv = exp

(
f̃ s(xh,m)+ µ̃s

v + ṽsh

)

(4)log
(
Y
s

v

)
= log

(
1− Ĝ

s

)
I
s
+ α log

(
Y
s

B,v

)
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indicated whether or not the village received the interven-
tion throughout the trial, Y s

B,v is mean number of mosqui-
toes per house collected from village v during the one-year 
baseline collection period and α is a constant coefficient. 
We included adjustment for baseline mosquito counts 
as these were heterogeneous across the villages, with an 
intercluster coefficient of variation (typically denoted k 
[19]) in the mean observed mosquito counts yhmv per 
house across all months and years of k = 0.37. This led to 
imbalances in the primary outcome measure Y s

v between 
treatment arms, which we mitigated by adjusting for clus-
ter level mosquito counts at baseline [19].

For each value of CA, we estimated the statistical 
power to detect the suppression impact G by estimat-
ing Ĝs for S = 100 simulated data sets and calculating the 
proportion of estimates that were significant based on a 
two-tailed p-value of less than 0.05 [65]. Inference was 
performed in Stata [66] [64].

Simulating step wedge CRCT designs
We simulated step wedge trial designs whereby clusters 
are divided into sequences and the time at which the 
intervention is implemented varies between sequences 
(Additional file  1: Fig. S5). Interventions are timed to 
begin at the start of fixed time periods; here we assume 
that each period lasts 1  year. We chose a design with 
three sequences and two time periods, with the clusters 
in the first sequence receiving the intervention in both 
periods, and the clusters in the second sequence receiv-
ing the intervention in the second period only. Clusters 
in the third sequence do not receive the intervention and 
serve as controls throughout the trial. As above, we simu-
lated a year of baseline mosquito sampling for all clusters, 
so each simulated data set covered a three-year period.

We simulated data sets for step wedge designs varying 
the number of clusters per sequence, CS, where the sim-
ulated data for each cluster and sequence was obtained 
by selecting random posterior draws of the counts ỹshmv 
for all houses and months in the three-year period. We 
multiply ỹshmv in the clusters receiving the intervention by 
the suppression effect 1-G as described above. We simu-
lated 100 data sets for each value of CS. Due to the small 
numbers of clusters that we consider in our simulated 
trials, we estimate Ĝs for each data set using a within-
period analysis [51], again adjusting for the baseline 
mosquito counts in each cluster. We estimate the inter-
vention effect using the same linear regression model as 
described above for the parallel trial design (Eq. 4). Con-
fidence intervals for Ĝs were estimated using a permuta-
tion test [51] with 500 permutations. Statistical power for 
each value of CS was calculated as the proportion (out 
of S = 100) of estimates that were statistically significant 
based on a p-value of 0.05.

Simulating suppression on a single vector species
Species identification was performed on mosquitoes col-
lected by PSC for samples collected from January 2017 to 
December 2019, as discussed above. For these years, we 
simulate the number of female An. coluzzii collected in 
each house, month and village, c̃shmv , by:

Here, Shmv is number of female mosquitoes in the sub-
set that were retained for species identification in house 
h, month m and village v. Z̃s is a random variable sam-
pled from a binomial distribution with a number of trials 
Shmv and a mean probability equal to the proportion of 
Shmv that were identified as An. coluzzii (denoted pchmv ) 
by genotyping. The number of female An. gambiae col-
lected in each house, month and village,g̃ shmv , was simu-
lated in the same way. We note that Shmv and the species 
composition of these samples varies across years in the 
PSC data, and our simulated counts c̃shmv and g̃ shmv incor-
porate this yearly variation (see Additional file 1 for fur-
ther details).

We simulated data sets for step wedge and parallel 
CRCT designs in a similar way to the above methodology 
for simulating counts across all species ( ̃yshmv ). For each 
cluster, the simulated data for each year is obtained by 
selecting random posterior draws to calculate the counts 
ỹshmv for all months. Corresponding values of c̃shmv and 
g̃ shmv were then calculated using Eq. 5. For parallel designs 
we simulated S = 100 data sets for each value of the num-
ber of clusters per arm, CA; for step wedge designs we 
did the same for each value the number of clusters per 
sequence, CS. In the intervention clusters, values of c̃shmv 
and g̃ shmv were multiplied by the suppression effect 1-G. 
For each data set we estimated Ĝs using linear regres-
sion models similar to those described above for parallel 
and step wedge designs (Eq. 4), modified to represent the 
counts of only the target vector species:

where Cs
v is the mean counts per house of An. coluzzii 

in village v over the trial period and Cs
v,B is the mean 

counts per house over the baseline period. The same 
approach was used to model suppression effects acting 
only on An. gambiae. Statistical power was again calcu-
lated as the proportion of the S = 100 estimates that were 
significant based on a two-tailed p-value of less than 0.05.

Simulating alternative sampling strategies
An important aspect of CRCT design is selecting 
sampling strategies with sample sizes that are suf-
ficient to achieve the required statistical power but 

(5)c̃shmv = ỹshmv Z̃
s/Shmv

(6)log
(
C
s
v

)
= log(1− Ĝs)I s + αlog(C

s
B,v)
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not unnecessarily large, leading to wasted resources. 
We simulated CRCT data sets for a range of alter-
native monitoring strategies. We first restricted the 
period of PSC collections to the rainy season months 
of May–October, which is the period when the major-
ity of the mosquitoes are collected, by using only the 
data for each cluster, ỹshmv , for months m = May–Octo-
ber inclusive. Second, we varied the number of houses 
from which monthly PSC collections were made in 
each cluster. We simulated data sets for different sam-
pling protocols where the number of houses sampled in 
each village and month, H, was set to either H = 1, 5, 
10, 20 or 40 houses, noting that this sample size could 
not always be attained for some clusters due to missing 
data. Our methodology for generating these simulated 
data sets is as follows. If the value of H was less than 
the number of houses sampled per village and month 
by the PSC collections, a subset of H houses was ran-
domly sampled without replacement from the full set of 
houses from which mosquitoes were collected. If H was 
greater than the number of houses sampled by the PSC 
collections, house locations were sampled twice. We 
note that, for Bana, Pala and Souroukoudingan, twenty 
houses were sampled by PSC each month, whereas for 
Bana Market, only six houses were sampled by PSC per 
month. Thus, for clusters where data was drawn from 
the Bana Market houses, the maximum number of 
houses sampled was H = 12.
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