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Abstract

Background Novel interventions for mosquito-borne disease control which release modified mosquitoes that are
sterilised or genetically modified to cause offspring inviability are progressing towards field applications. Cluster
randomised control trials (CRCTs) could provide robust assessment of intervention efficacy in suppressing mos-
quito populations in field environments, but guidance on designing CRCTs to detect mosquito suppression impacts
is limited.

Results We developed statistical models to simulate CRCTs, informed by a 5-year time series measuring densi-

ties of malaria vector species from the Anopheles gambiae complex in four villages in western Burkina Faso. We
estimated requirements for parallel and step wedge designs, varying the targeted vector species, the suppression
effect and the monitoring regime. For a suppression effect of 50%, 21-22 clusters were required to detect suppres-
sion with 90% power when all An. gambiae complex species were targeted, while 24-26 clusters were required
when only An. coluzzii was targeted and 60-66 clusters were required when only An. gambiae was targeted.

For stronger suppression effects, required trial sizes depended less on target species, with 9-10 clusters being suf-
ficient to detect a 90% suppression effect. We investigated how reducing sampling effort, by sampling fewer houses
and restricting sampling to rainy season months, affected statistical power.

Conclusions Our results provide empirically based guidance for designing CRCTs to evaluate interventions aiming
to suppress malaria vector populations.

Keywords Cluster randomised control trials, Gene drive, Geostatistical model, Malaria, Vector control, Sterile insect
technique, Genetically modified organism, Mosquito-borne disease

Background

Many strategies for controlling mosquito disease vec-

tors act by suppressing vector populations. Interventions
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tools is needed to achieve progress in mosquito-borne
disease control and elimination, including novel technol-
ogies [4].

Strategies for suppressing vector populations involv-
ing field releases of modified adult male mosquitoes are
increasingly being developed and deployed. Releases
of males which are sterilised through irradiation [5], or
genetically modified such that their offspring are invi-
able [6], have been trialled in a number of global regions
since the 1970s [5, 7, 8]. Recently, in Singapore, releases
of male Ae. aegypti mosquitoes infected with a strain of
Wolbachia bacteria that causes matings with uninfected
females to produce inviable offspring have achieved sub-
stantial reductions in dengue cases [9].

To effectively suppress vector populations, the above
strategies require large numbers of males to be reared
in mass rearing facilities and released [9, 10]. This issue
may be overcome by novel approaches where modi-
fied genes are inherited across successive generations
of the mosquito population following release, causing
more sustained suppression. A suite of approaches with
diverse underlying genetic mechanisms, technological
implementations and potential impacts on mosquito
populations have been proposed [11-14]. Some strate-
gies are ‘self-limiting’ [11], whereby the released genes
persist for a small number of generations before being
lost from the population. For example, the Friendly™
technology developed by Oxitec, which produces geneti-
cally modified (GM) male mosquitoes whose matings
with wild females produce inviable female offspring
(male offspring survive), has recently been released in
Djibouti in the invasive malaria vector An. stephensi
[15]. At the other end of the spectrum, ‘low-threshold’
gene drive technologies are being investigated [11],
whereby the released genes could potentially increase
in frequency across successive generations and spread
indefinitely throughout populations of the targeted mos-
quito species [16]. For instance, a gene drive that con-
fers sterility in homozygous females has been shown to
spread and induce the complete suppression of large
cage populations of the malaria vector Anopheles gam-
biae [17]. Field trials of low-threshold gene drives are
currently being actively considered [18].

Compared to mainstay insecticide-based interven-
tions like ITNs and IRS, the efficacy of mosquito release
strategies for vector population suppression, such as
SIT, self-limiting GM mosquito releases and gene drive
releases, is not yet well understood. Cluster randomised
control trials (CRCTs) are the gold standard methodol-
ogy for robust quantification of the efficacy of public
health interventions that impact disease outcomes across
whole communities [19] and are commonly used to sup-
port applications for World Health Organisation (WHO)
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approval for intervention rollout [20]. CRCTs randomise
the allocation of an intervention across a series of com-
munities, or clusters, with those not receiving the inter-
vention acting as controls [19]. Several CRCTs have been
conducted to promote the scaling up of chemical insecti-
cide-based interventions for vector control [21-24], but
most trials of mosquito release interventions for popula-
tion suppression have been smaller scale pilot trials [7].
More recently, larger trials releasing Wolbachia-infected
male mosquitoes compared several treatment and con-
trol locations and demonstrated substantial impacts on
vector suppression and disease incidence, although the
designs did not randomise the allocation of treatment
and control sites [9, 25].

Mosquito release interventions target wild populations
of particular vector species by rearing and releasing mod-
ified mosquitoes of these species. The majority of trials
conducted thus far have investigated mosquito releases
in the Aedes genus, which transmit arboviruses such as
the dengue, Zika, yellow fever and chikungunya viruses.
Relatively few trials have conducted mosquito releases in
Anopheles malaria vector species [7]. In Africa, malaria
vectors include seven species from the An. gambiae com-
plex [26, 27], as well as An. funestus and the invasive spe-
cies An. stephensi, with cryptic species also implicated in
transmission [28]. Epidemiological impacts will therefore
depend on the abundance of the targeted vector species
relative to that of other non-target vector species present
in the area [29]. Thus, we need to understand the direct
impacts of mosquito release interventions in suppressing
populations of targeted vector species to estimate their
potential efficacy and how this varies across different
environments.

There is a lack of CRCTs of malaria vector control
interventions that consider vector population suppres-
sion as their primary endpoint, although several have
assessed suppression as a secondary endpoint [30-32].
Vector densities can be highly variable [33, 34], logisti-
cally intensive to monitor and dependent on the col-
lection method [35]. Potentially high variability in the
densities of the vector species targeted by the inter-
vention may mean that large trial sizes are required to
robustly detect vector population suppression effects
with sufficient statistical power [19].

Large CRCTs for novel mosquito release interven-
tions may be logistically challenging, requiring signifi-
cant stakeholder engagement which could be difficult
to coordinate when releasing in many clusters simul-
taneously. However, for interventions where modified
genes persist in wild mosquito populations following
releases, smaller pilot trials could still affect large areas
if the modified genes diffuse spatially [18]. Step wedge
CRCT designs, where the initiation of the intervention
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is staggered such that some clusters receive the inter-
vention later than others, could possibly enable robust
assessment of intervention efficacy while allowing the
intervention to initially be applied in a small number
of clusters.

To support the design of trials to evaluate novel mos-
quito release interventions for malaria control, we
develop statistical models to simulate data obtained
from CRCTs aiming to detect suppression in the num-
bers of adult Anopheles malaria vectors resulting from
a vector control intervention. Our models are informed
by a 5-year time series of malaria vector density meas-
urements obtained using pyrethrum spray catch (PSC)
methods conducted in four villages in south west Bur-
kina Faso, which recorded densities of three major vec-
tor species from the An. gambiae complex (An. gambiae,
An. coluzzii and An. arabiensis). Mosquitoes were col-
lected in all months of the year, typically at 20 geolocated
houses per village, allowing spatiotemporal variability in
mosquito counts to be characterised. We compare simu-
lated CRCTs where different vector species are targeted
by the intervention, considering a range of trial designs,
suppression effect sizes and monitoring intensities. Our
results provide empirically based estimates of statistical
power that can inform the design of upcoming field tri-
als aiming to obtain robust estimates of malaria vector
population suppression impacts.

Results

Simulating mosquito counts across space and time

We fitted a spatiotemporal geostatistical model to counts
of mosquito species from the An. gambiae complex col-
lected by PSC from each house, village and month over
a 5-year period covering July 2012 to July 2014 and Janu-
ary 2017 to December 2019. Collections were made from
four villages all within 30 km of Bobo Dioulasso: Bana
centre, Bana market, Pala and Souroukoudingan [36].
Typically, 20 houses per month were sampled in Bana
centre, Pala and Souroukoudingan, and 6 houses per
month were sampled in the smaller settlement of Bana
market, with missing records in some months (see the
“Methods” section).

Simulations from the posterior of the fitted model (see
the “Methods” section) captured monthly and seasonal
variation in the total number of mosquitoes caught in
each village (Fig. 1). The posterior predictive distribu-
tion of the mosquito counts per house agreed well with
the observed distribution (Fig. 2). The fitted geostatistical
model indicated significant overdispersion of mosquito
counts across both houses and villages (Table 1). Signifi-
cant spatial and temporal autocorrelation was also iden-
tified, notably with negative temporal autocorrelation
in mosquito counts across months (Table 1). Predictive
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maps generated by the geostatistical model suggest that
the locations where high mosquito counts occur are not
consistent over time (Additional file 1: Figs. S6, S7 and
$8) [37-40], with locations tending to switch from having
high counts to low counts between consecutive months
(Additional file 1: Fig. S9).

Molecular identification of collected An. gambiae com-
plex mosquito species was performed in the years 2017—
2019 only (see the “Methods” section). The vast majority
(93.5%) of the collected An. gambiae complex species
were identified as either An. gambiae or An. coluzzii (see
the “Methods” section). Simulations from the posterior
of the number of mosquitoes of each species in each vil-
lage and month (see the “Methods” section) reflect the
high heterogeneity in species composition between the
four villages (Fig. 3). Bana and Bana Market showed con-
sistently higher numbers of An. coluzzii relative to An.
gambiae throughout the period (Fig. 3). In Pala there was
typically more An. gambiae than An. coluzzii, although
there is overlap in the posterior distributions of the
monthly counts between the two species. In Sourouk-
oudingan, estimated proportions of the two species are
more similar, with higher numbers of An. coluzzii than
An. gambiae on average.

Statistical power to detect vector population suppression
We simulated CRCT data sets for trials lasting two years
preceded by 1 year of baseline data collection by draw-
ing counts of collected mosquitoes per house, month and
cluster from the posterior distribution of the fitted geo-
statistical model (see the “Methods” section; Egs. 1 and
2). We simulated counts of all mosquitoes that were mor-
phologically identified as belonging to the An. gambiae
complex, and counts disaggregated by species for the two
predominant species, An. gambiae and An. coluzzii (see
the “Methods” section; Eq. 5).

We modelled two types of CRCT design, including par-
allel and step wedge designs (see the “Methods” section),
and estimated the statistical power to detect a propor-
tional reduction in mosquito counts, G, in the interven-
tion compared to the control clusters. We considered
three suppression effects, setting G to 50%, 70% and 90%.
To represent mosquito release interventions targeting
multiple species or only a single species, we compared
cases where suppression acted on all An. gambiae com-
plex species (including An. gambiae, An. coluzzii and An.
arabiensis), An. gambiae only, or An. coluzzii only. Our
statistical analyses adjusted for baseline counts of the tar-
get vector species (see the “Methods” section). We note
that our estimates of statistical power are stochastic, and
our estimates of minimum trial sizes required to achieve
a given statistical power are not exact.
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Fig. 1 Posterior samples of the predicted number of mosquitoes collected in each month, year and village compared to observed values.
Lines show sixty random draws from the posterior distribution predicted by the geostatistical model, and markers show the data on numbers
of mosquitoes collected. The geostatistical model (Eq. 1) has 5 fitted parameters

For the smaller suppression effects (G=50% and
G=70%), power depended on which vector species were
targeted by the suppression effect (Fig. 4). Power was
lowest when suppression acted on An. gambiae only
(Fig. 4A-D). Power was similar when suppression acted
on all three vector species compared to when suppres-
sion acted on An. coluzzii only, noting that targeting only
An. coluzzii resulted in small decreases in power for the
smallest suppression effect (G=50%). For a suppression
effect of 50% acting on all vector species, 90% power was
achieved for 7 clusters per sequence (C,) for the step
wedge trial design and 11 clusters per arm (C,) for the
parallel trial design. When this suppression effect acted
on An. coluzzii only, the step wedge design required 8
clusters per sequence to achieve 90% power and the par-
allel design required 13 clusters per arm. When suppres-
sion acted only on An. gambiae, the step wedge design
required 22 clusters per sequence to achieve 90% power

and the parallel design required 30 clusters per arm.
Overall, the step wedge and parallel trial designs showed
very similar efficiency, noting that the step wedge trial
design has three sequences of C, clusters per sequence
and the parallel design has two arms of C, clusters per
arm (see the “Methods” section).

The larger trial sizes required when only An. gambiae
experienced suppression can be explained by the rela-
tively low numbers of An. gambiae collected, particularly
in Bana centre and Bana market, where no An. gambiae
were collected in a high proportion of houses (Additional
file 1: Fig. S4). The relatively high proportion of zero
counts for this species makes suppression effects more
difficult to detect.

For stronger suppression effects, smaller trial sizes
were required for 90% power, and there was less differ-
ence in required trial sizes depending on which vec-
tor species were targeted (Fig. 4). When suppression of
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Fig. 2 A Q-Q plot showing the quantiles of the observed total
mosquito counts versus the quantiles of the posterior mean fitted
values of the mosquito counts in each house, month and village.
Black circles show the sequence of 41 quantiles increasing from zero
to one at evenly spaced intervals of 0.025. The grey shaded

region shows the area of the graph corresponding to a linear

scale on both axes, with the remaining area showing a log scale

on both axes

G=90% occurred, 90% power was achieved for the mini-
mum trial size considered (C,=3 or C,=5), regardless of
which vector species experienced the suppression effect
(Fig. 4E, F).

Effects of alternative monitoring strategies on statistical
power

We explored the effects of alternative monitoring strat-
egies on required trial sizes, including restricting PSC
sample collection to the rainy season months (May—
October) and varying the number of houses sampled in
each monthly collection (see the “Methods” section).
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Sampling during the rainy season only

Restricting PSC collections to the rainy season had
nuanced effects on statistical power. When the low-
est suppression effect (G=50%) was experienced by all
An. gambiae complex species, power increased when
sampling was restricted to the rainy season for both
step wedge and parallel designs (Fig. 5A, B). For the
step wedge design, the required trial size for 90% power
reduced from 7 to 5 clusters per sequence, and for the
parallel design, the required trial size reduced from 11
to 7 clusters per arm. Mosquito counts in the rainy sea-
son are much higher than in the dry season (Fig. 1), so
including dry season counts in the effect size estimation
can increase the intercluster variation, despite the higher
cluster sample sizes.

However, if the suppression effect targeted Amn.
coluzzii only, restricting sampling to the rainy sea-
son reduced power (Fig. 5C, D). For the step wedge
design, the required trial size for 90% power increased
from 7 to 11 clusters per sequence, and for the paral-
lel design, the required trial size increased from 13
to 20 clusters per arm. Restricting sampling to rainy
season months did not affect power when the sup-
pression effect targeted only An. gambiae (Fig. 5E, F).
Thus, restricting sampling to the rainy season was only
detrimental when A#n. coluzzii was the sole target of
the suppression effect. An. coluzzii was present in the
dry season months, with substantially higher dry sea-
son counts than An. gambiae in Bana and Bana mar-
ket, and dry season sampling improved power to detect
suppression. This could be because there were several
houses with missing genotypic data (Additional file 1:
Fig. S3), which reduced the cluster sample sizes for
species-specific counts. Rainy season-only sampling
further reduced sample sizes to the detriment of sta-
tistical power to detect suppression when An. coluzzii
was the target species. This effect was not seen when
all species experienced suppression because there were
larger cluster sample sizes and less missing data on PSC
counts of all An. gambiae complex species.

Table 1 Parameters of the spatiotemporal geostatistical model fitted to the counts of mosquitoes collected by PSC

Parameter Mode 0.025% ClI 97.5% Cl
Range of spatial autocorrelation (r) 0.0018 (°N) 0.0016 (° N) 0.0021 (°N)
Standard deviation of spatially-correlated random effect (c2) 4.83 4.17 5.90

Monthly temporal autocorrelation (p)
Standard deviation of the house level random effect (vy)

Standard deviation of the village level random effect (u,)

(log(no.mosquitoes))
-067

0.71
(log(no.mosquitoes))

1.0
(og(no.mosquitoes))

(log(no.mosquitoes))
-0.78

0.66
(log(no.mosquitoes))
0.88
(log(no.mosquitoes))

(og(no.mosquitoes))
-0.54

0.77
(log(no.mosquitoes))
1.14
(og(no.mosquitoes))
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Fig. 3 Posterior samples of the predicted number of mosquitoes of each species collected in each month, year and village compared to observed
values. Black lines show sixty random draws from the posterior distribution of the numbers of An. coluzzii predicted by the geostatistical model
(Eq. 5) and black markers show the expected value of the number collected (pf, , Yamy)- Red lines and markers show corresponding values

for the numbers of An. gambiae collected. The geostatistical model (Eq. 1) has 5 fitted parameters

When the suppression effect was G=70%, rainy sea-
son-only sampling had much smaller impacts on power
(Additional file 1: Fig. S10). Reductions in power again
occurred when An. coluzzii was the only species targeted,
with negligible impacts when either An. gambiae or all
three vector species experienced suppression. A suppres-
sion effect of G=90% was sufficiently strong that restrict-
ing PSC collections to the rainy season months had no
impact on statistical power, regardless of whether all
species or only a single species experienced suppression
(Additional file 1: Fig. S11).

Varying the number of houses sampled

The number of clusters required to provide 90% power
to detect vector population suppression plateaued as the
number of houses sampled in each cluster per month
increased (Fig. 6). For the lowest suppression effect
(G=50%), using the step wedge design, required trial
sizes plateaued when ten or more houses per month were
sampled (Fig. 6A). Using the parallel design, required
trial sizes also plateaued at ten houses per month, except
when An. gambiae was the only vector species targeted

by the suppression effect—in this case, required trial
sizes plateaued when twenty or more houses per month
were sampled (Fig. 6B). For the parallel design, more
houses needed to be sampled to detect suppression act-
ing on An. gambiae because PSC collections of An. gam-
biae contained fewer mosquitoes (Fig. 3). Under the step
wedge design, however, required trial sizes plateaued at
ten houses per month when An. gambiae was the only
species targeted. This suggests that, for the step wedge
design, statistical power is more robust to reductions in
cluster sample sizes compared to the parallel design.

For a higher suppression effect of G=70%, required
trial sizes plateaued when five or more houses per month
were sampled, for both parallel and step wedge designs,
regardless of which species were considered as targets.
When G was increased to 90%, required trial sizes pla-
teaued when only one house per month was sampled
when either all species were targeted by the suppression
effect or when only An. coluzzii was targeted. However,
when only An. gambiae was targeted, required trial sizes
plateaued when five or more houses per month were
sampled.
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Fig. 4 The power to detect a suppression effect G acting on targeted vector species. Blue square markers show the power when all An. gambiae

complex species (An. gambiae, An. coluzzii and An. arabiensis) experience the suppression effect. Red asterisks and black circles show power values
when only An. coluzzii (red markers) or only An. gambiae (black markers) are suppressed. Dotted lines show the 90% power threshold. Suppression
effects of 50% (row A-B), 70% (row C-D) and 90% (row E-F) are shown. Both step wedge designs (column A, C, E) and parallel designs (column B,

D, F) were modelled

Discussion

We developed statistical models to simulate data sets
generated by CRCTs of interventions that suppress
densities of adult malaria vectors, aiming to identify
trial designs that achieve high statistical power with

minimal sampling effort. Our models captured patterns
of spatiotemporal variability observed in a five-year
time series of malaria vector density measurements
obtained in rural Burkina Faso, and thus provide empir-
ically based estimates of statistical power. Statistical



Hancock et al. BMC Biology (2025) 23:303

A. Step-wedge, All species

D A S P O D L e e e e e e e e m e m e m e —m - ——————————— = - - ]
8
— 7 ..
g 87"
DO_ -
o |
N
o 4
T T T T T T T T
5 10 15 20 25 30 35 40
Clusters per sequence
C. Step —wedge, An. coluzzii only
o
S ORRERERREEEEERED
..... e s 2O DO ]
— o ..
22
S i
o
o |
N
o 4
T T T T T T T T
5 10 15 20 25 30 35 40
Clusters per sequence
E. Step-wedge, An. gambiae only
o
o - N
[ S, T
g 2 Jenee
o . e
o
SR I
o 4
T T T T T T T T
5 10 15 20 25 30 35 40

Clusters per sequence

Page 8 of 16
B.  Parallel, All species
A NP - N N § ‘.‘.o-'...' ....................................
. o . *
[ 3
o |
N
o 4
T T T T T T T T
5 10 15 20 25 30 35 40
Clusters per arm
D. Parallel, An. coluzzii only
o r— - =
S D meestetetpapEEEAYEANEEY ]
o N . M
g 8-.°
§
o
o |
N
o 4
T T T T T T T T
5 10 15 20 25 30 35 40
Clusters per arm
F. Parallel, An. gambiae only
o
S .
g ;..e--.;...in..,.. ........
g g4 ag¥> :
5 ‘oa
o o
4= °
o
T T T T T T T T
5 10 15 20 25 30 35 40

Clusters per arm

Fig. 5 The effect sampling only during the rainy season (May—-October) on the power to detect a suppression effect G acting on all An. gagmbiae
complex species (An. gambiae, An. coluzzii and An. arabiensis). Power values when collections were made in all months of the year (black circles)
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power threshold. Rows show results when suppression affects all vector species (A, B), An. coluzzii only (C, D) and An. gambiae only (E, F). Both step
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power depended on which vector species (within the
An. gambiae complex) experienced the suppression
effect of the intervention. Of the three vector species
identified, An. coluzzii was most abundant in the PSC
collections, and power was similar when suppression
acted only on An. coluzzii to when suppression acted on
all three vector species, provided the sampling protocol
followed that used in the PSC collections [36]. When
An. gambiae was the sole target of the suppression
effect, power was substantially lower. Moreover, when
An. coluzzii was the only species experiencing suppres-
sion, power was less robust to reducing sampling effort
by restricting PSC collections to rainy season months.
This was likely due to the substantial number of houses
with missing data for genotyped mosquito samples,
highlighting the additional challenges and resource
requirements associated with monitoring densities of
specific species within the An. gambiae complex.

There is potential for mosquito release strategies for
population suppression to be developed in multiple

malaria vector species. For example, gene drives that
spread genes causing female infertility by targeting a
female-specific exon in the doublesex gene are cur-
rently being developed in An. gambiae and An. coluzzii
[17, 41, 42]. Strategies involving releasing sterile males
without the onwards spread of modified genes through
to the next generation, known as the sterile insect tech-
nique (SIT), have been investigated in An. gambiae [43],
An. coluzzii [44] and An. arabiensis [45]. Outstanding
challenges include developing efficient sex-separation
methods in mass-reared mosquito colonies prior to male
releases [42, 45, 46] and rearing males that will effectively
compete with wild counterparts in mating [44]. Impor-
tantly, the ability of mosquito release interventions to tar-
get multiple malaria vector species will be critical to their
efficacy in reducing human malaria cases [29], which is a
strong motivation for overcoming the associated techni-
cal and logistical challenges.

We also obtained estimates of trial size requirements
for a range of mosquito collection sampling regimes, in
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Fig. 6 The effect of varying the number of houses sampled in each cluster per month on the number of clusters required to attain 90%

power to detect a suppression effect G. Required cluster numbers when all An. gambiae complex species (blue lines and markers) experienced
suppression, only An. coluzzii (red lines and markers) and only An. gambiae (black lines and markers) experienced suppression are shown. Results
for suppression effects of G=50% (A, B), G=70% (C,D) and G=90% (E, F) are shown. Both step-wedge (column A, C, E) and parallel (column B,
D, F) designs were modelled. When only An. gambiae experienced the lowest suppression effect (G=50%), sampling only one house per cluster
was insufficient to attain 90% power for all trial sizes considered (results not shown). Mosquito collections are assumed to occur in all months

of the year

terms of the number of houses sampled from each vil-
lage, and the times of year in which sampling occurs.
Statistical power plateaued as the number of houses
sampled per village increased, and we found that more
houses were sampled in the PSC data set than were
needed for approximately equivalent statistical power to
detect vector suppression across the range considered,
with 1-10 houses per village being sufficient in almost
all cases. This small requirement on cluster sample sizes
indicates that the precision of the estimated intervention

effect is primarily determined by variation in mosquito
counts between, rather than within, clusters. Our analy-
ses considered trials with small numbers of clusters (typi-
cally <60 clusters), and thus, we used simple analyses for
estimating the intervention effect that did not consider
sources of within-cluster variability in mosquito counts
across houses [19]. Our geostatistical models indicated
variable spatial distributions of mosquito counts within
villages between months, with a lack of temporal consist-
ency in the locations showing high mosquito numbers.
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This suggests that the inclusion of house-level variables
may not contribute greatly to the explanatory power of
the analyses, even if more detailed models were used.
Interestingly, we found a negative temporal autocorrela-
tion in the mosquito counts per house, which may pos-
sibly be due to a sustained effect of the PSC activity on
mosquito densities in the house.

Our statistical model for estimating intervention
effects adjusted for baseline data on counts of the target
vector species by including a year of baseline data col-
lection in our simulated data sets. Adjusting for baseline
covariates that are predictive of the outcome of interest
is recommended when there is variation between clusters
with respect to these covariates [19, 47]. In the PSC data,
mosquito counts and vector species composition were
strongly variable across study sites. When we repeated
our analyses without adjusting for baseline counts, power
was greatly reduced (Additional file 1: Fig. S12). Thus,
our results advocate for collecting baseline data in tri-
als to assess suppression effects in species from the An.
gambiae complex. In real trials, restricted randomisation
approaches could alternatively be used to reduce imbal-
ance across clusters [19]. Our statistical models repre-
senting variability in collections of An. gambiae complex
mosquitoes are based on spatiotemporal data from four
villages, limiting their ability to describe variability across
a larger set of locations. We note, however, that collec-
tions took place over a five-year time period, so some
variability due to changing conditions is captured. None-
theless, we did not attempt to model restricted randomi-
sation due to the limited number of clusters sampled in
the PSC collections. In designing real trials, we recom-
mend conducting baseline monitoring of vector densities
over the full set of sites participating in the trial to assess
whether intercluster variability deviates from the values
observed in our data. Models could then be refitted to
obtain updated estimates of trial design requirements.

We found that the parallel and step wedge designs were
similarly efficient in terms of required numbers of clus-
ters. Other studies have compared the efficiency of step
wedge and parallel designs and found that either design
can sometimes be more efficient, depending on the num-
ber of clusters, cluster sample sizes, and the level of inter-
cluster correlation [48, 49]. For step wedge trials with
larger trial sizes, analyses can gain power from longitu-
dinal (before-and-after) comparisons within clusters [50],
which are not taken into account by within-period analy-
ses, which are recommended for small trial sizes [51-53].
Here we have used within-period analyses with adjust-
ment for cluster-level mosquito counts at baseline. We
note that analyses of step wedge designs can be biased
if any secular temporal trends in the outcome measure-
ments are not accurately accounted for [52, 53], and our
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simulation study did not incorporate or consider impacts
of secular trends.

Our analyses considered only the female mosquitoes
that were collected by PSC, but males were also col-
lected and could potentially inform estimation of sup-
pression effects. We did not include the counts of male
mosquitoes because males have a lower propensity to
rest indoors than females [54] and PSC collections may
be less representative of true male densities. Power could
be potentially increased by developing independent geo-
statistical models for the male and female counts and
simulating CRCTs representing suppression impacts
on both sexes, which could then be analysed jointly.
Female malaria vectors do bite humans outdoors, and an
increase in outdoor biting propensity has been observed
in some areas following widespread use of indoor insec-
ticidal interventions [55]. PSC methods capture only
indoor resting mosquitoes and do not represent outdoor
biting vector populations, which is a limitation of using
PSC for measuring mosquito densities.

Our assumption of a temporally constant suppres-
sion effect is a simplification of the impacts of mosquito
release interventions, which will inevitably cause tem-
porally varying suppression effects. We have assumed a
Poisson model of mosquito counts, whereby the suppres-
sion intervention linearly reduces the variance in mos-
quito counts. The nature of the variability associated with
the suppression effect will be specific to the interven-
tion and the intensity of the releases. Extensions of our
analyses to incorporate time-varying suppression effects
will be important to consider and could be informed by
predictions of mechanistic models of vector population
dynamics (e.g. [56, 57]). We note, however, that we model
CRCTs where the endpoint is average suppression across
a two-year time period, rather than temporal variation in
suppression throughout the trial. Thus, our results are a
parsimonious representation of vector suppression and
constitute a necessary first step.

Our analysis also did not consider potential spillover of
the intervention into control clusters [58], which could
occur with mosquito release interventions that introduce
spatially spreading modifications, such as gene drives.
Spillover effects could be mitigated by geographic sepa-
ration of clusters to allow for buffer zones [19], although
there are challenges involved in estimating the required
size of the buffer zones a priori. Alternatively, a CRCT of
Wolbachia releases in Ae. aegypti in Yogyakarta, Indone-
sia, allowed for spillover based on calculations showing
minimal effects on statistical power [59]. Further model-
ling research to estimate the impacts of spillover on trial
design requirements will be needed to inform first field
trials of spatially spreading interventions such as novel
low-threshold gene drives.
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When released modified genes persist in wild mosquito
populations for many generations, as is anticipated with
low-threshold gene drives, they could potentially intro-
gress into closely related species through hybridisation.
This could occur between the sibling species An. coluzzii
and An. gambiae, which are known to hybridise in the
wild [60]. It is uncertain whether this would occur within
the duration of a CRCT, and it will be important for trials
of gene drive releases to include monitoring to detect the
modified gene in closely related species that could poten-
tially hybridise with the released species [18].

Conclusions

Our modelling analyses characterise CRCTs for detect-
ing malaria vector population suppression by estimating
trial size requirements for a range of trial designs, vec-
tor species targets, suppression efficacies and sampling
strategies. Several novel mosquito release interventions
for malaria control are currently progressing towards
field applications, but their efficacy in vector popula-
tion suppression has not yet been rigorously assessed
using CRCT methods. CRCT approaches will likely be
important tools in developing a robust understanding
of suppression efficacy and optimising release strategies.
Encouragingly, our results indicate that large CRCTs are
not necessary to provide statistically powered estimates
of moderate to high suppression effects.

Methods

Time series of mosquito density measurements

From July 2012 to July 2014 and from January 2017 to
December 2019, indoor resting mosquitoes were col-
lected each month from housing compounds in four vil-
lages near Bobo Dioulasso: Bana centre, Bana market,
Pala and Souroukoudingan [36, 61]. These villages are all
within 30 km of Bobo Dioulasso, with Bana Market being
a peripheral district of Bana that is separated from Bana
Center by a semi-permanent river [36]. A high coverage
of ITNs in the region has been reported in recent years
[36]. Mosquitoes were collected using pyrethrum spray
catches (PSC); details of the mosquito collection proce-
dures are provided in Epopa et al. [36]. In summary, in
Bana, Pala and Souroukoudingan, twenty houses in each
village were sprayed per month, while in the smaller set-
tlement of Bana Market six houses were sprayed per
month. For each house, the spray date and GPS (Global
Positioning System) positions were recorded. Of the
twenty houses, ten were selected at random each month
from each village, and a fixed set of ten houses in each
village were repeatedly sampled each month. In Bana
Market, all sampled houses were within a fixed set of
houses that were repeatedly sampled each month. The
fixed houses were spread to represent the geography and
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extent of each village. For some months, there are some
missing records, and count data for less than twenty
houses is available, or less than six houses in the case of
Bana Market (Additional file 1: Fig. S2).

In this study we use data on counts of collected mos-
quito species from the An. gambiae complex, which were
identified morphologically. From January 2017 onwards,
a subset of ninety mosquitoes identified as members of
the An. gambiae complex were retained from each vil-
lage’s monthly collection for species identification by
Polymerase Chain Reaction (PCR) [62]. The retained
samples were selected at random from the total catch
in each house, where the number retained per house
was proportional to the total catch in each house. This
ensured that the samples of specimens retained for spe-
cies identification were representative of the full data set
at the house level. For some months, species identifica-
tion failed for some of the collected mosquitoes, so the
data set contains missing information on species for
some samples (Additional file 1: Fig. S3). Of the species
identified from the An. gambiae complex, the vast major-
ity were either An. gambiae or An. coluzzii, with An. ara-
biensis making up 6.5% of all samples identified. Vector
species composition was found to differ markedly across
the four villages. In Bana and Bana market, about 93% of
all collected mosquitoes from the An. gambiae complex
were identified as An. coluzzii. In Souroukoudingan, 57%
were An. coluzzii and in Pala 19% were An. coluzzii [36).

Geostatistical models of mosquito counts

We fitted a Bayesian spatiotemporal geostatistical model
to the counts of adult female mosquitoes in each house
to estimate the patterns of variability in the counts across
houses, villages and months of the year, accounting for
spatiotemporal autocorrelation in the count data. We
modelled the counts of only female, and not male, mos-
quitoes, because PSC data is likely to better represent
female vector densities, as males have a lower propensity
to rest indoors [54] (see the “Discussion” section). We
model the number of female mosquitoes from the An.
gambiae complex collected in each house, 4, month, m,
and village, v, denoted y,,,, as a Poisson distribution:

Vimy ™~ Pois(),hmvlf(xh,m), 9) (1)

The linear predictor is modelled using a Gaussian pro-
cess regression formulation:

10g (Vhmv) :f(xh,m) + wy + vy (2)

where x, is the location of house / (in World Geodetic
System (WGS)) 84 latitude and longitude coordinates),
f(x,,m) is a multivariate Gaussian process modelled
by a spatiotemporal Gaussian Markov Random Field



Hancock et al. BMC Biology (2025) 23:303

(GMRF), and pu, and vy are independently distributed
Gaussian random effects representing overdispersion
at the village and house levels, respectively. We define a
Bayesian hierarchical formulation for the model using a
vector of prior probability distributions for the hyper-
parameters 6 = [, 0,,0], where ¥ are the parameters
of f(xy, m) (see Additional file 1), and o, and oy, are the
standard deviations of the Gaussian random effects u,
and vy,. Posterior distributions of f(x, m), u, and v, were
then estimated by fitting the model using the R-INLA
package [39], which approximates f(xj, ) using a sto-
chastic partial differential equation (SPDE) approach
[63]. This involves solving for f(xy, m) at a discrete set of
points which are the nodes of a mesh constructed using
a Delauney triangulation. We constructed a mesh cov-
ering an area encompassing all four villages, with a fine
resolution within the area of each village and a coarse
resolution elsewhere (Additional file 1: Fig. S1). Code for
implementing the geostatistical models developed in our
study using R-INLA is available on GitHub [64].

Simulating field trials to detect mosquito population
suppression

We simulate data sets representing CRCTs aiming to
detect suppression of a targeted mosquito vector spe-
cies resulting from a vector control intervention, assum-
ing a constant suppression effect G throughout the trial
period. We considered two approaches to CRCT design,
including a parallel and a step wedge design. While par-
allel CRCTs are the standard approach used in trials of
vector control interventions, step wedge designs allow
the times of intervention implementation in each cluster
to be staggered, such that some clusters receive the inter-
vention at later times than others. This may be preferable
for novel strategies involving releasing GM mosquitoes
and gene drives, which have not yet been tested in the
field.

For both approaches, we simulated data for a set of
treatment and control clusters, assuming that a cluster
is represented by a village, and that mosquito count data
are collected from each cluster following the same proto-
col as that used in the PSC collections for the four study
villages. Thus, the number of houses sampled in each
cluster, month and year is assumed to be equal to that for
which PSC data was obtained (below we describe a modi-
fication where the number of houses per cluster is var-
ied). For each cluster, we simulated the number of female
mosquitoes collected from each house # and month m
by drawing from the posterior distributions of f(xy, m),
iy and vy, obtained from the fitted spatiotemporal model.
The simulated counts y; = were then given by drawing
from a Poisson distribution with a mean of
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By = e3P (f (oo ) + 11, + 3;) (3)

where fs (xy, m) is the sth random draw from the pos-
terior distribution of f (x;, m), and similarly 1z}, and ﬁfl are
random draws from the fitted posterior distributions of
these random effects. We simulate a number of data sets,
S, denoting s=1,...,S as the simulation index. Code and
vignettes for generated the simulated data sets is avail-
able on Github [64].

Simulating parallel CRCT designs

We simulated data sets for parallel designs where clusters
are randomly allocated to receive the intervention or to
act as controls, with all the intervention clusters receiv-
ing the intervention simultaneously. We assume a bal-
anced design with equal numbers of clusters per arm, C,,.
We consider trials lasting two years, where the simulated
data for each year is obtained by selecting random poste-
rior draws of counts y;  for all months in each year (we
also consider cases where only rainy season months are
sampled, see below). We assume here that the interven-
tion targets all An. gambiae complex species recorded in
the PSC collections (simulations assuming only a single
vector species is targeted are considered below). Thus,
for treatment clusters, we multiply y; by afactor1 — G,
where G is the assumed level of suppression of the tar-
get vector population. We also simulate a year of pre-trial
baseline data collection, whereby mosquito counts I/va
are drawn for all clusters for all months in a single year,
and no clusters experience the suppression effect. We
note that the locations of the houses for which counts
¥}y are simulated vary across years following the sam-
pling patterns in the PSC data set, which had missing
records for some houses in certain months and years (see
Additional file 1).

For each simulated data set s, we then obtain an esti-
mate of the suppression effect G by performing a linear
regression on cluster-level summaries of the logarithm of
the mean number of mosquitoes collected per house in
each cluster, where the log transform is applied to reduce
skewness in the cluster-level counts [19]. We based our
inference on cluster-level summaries because our field
trial simulations consider small numbers of clusters [19].
We used the following regression model to estimate the
suppression effect G, adjusting for the total cluster-level
mosquito counts at baseline:

log (Y}) = log (1 — @S) F+alog(Yy,) (4)

where, for simulated data set s, Y, is the mean number
of mosquitoes per house collected from village v over the
course of the two-year trial period, I° is a binary variable
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indicated whether or not the village received the interven-
tion throughout the trial, YE,V is mean number of mosqui-
toes per house collected from village v during the one-year
baseline collection period and « is a constant coefficient.
We included adjustment for baseline mosquito counts
as these were heterogeneous across the villages, with an
intercluster coefficient of variation (typically denoted k
[19]) in the mean observed mosquito counts ¥, per
house across all months and years of k=0.37. This led to
imbalances in the primary outcome measure Y, between
treatment arms, which we mitigated by adjusting for clus-
ter level mosquito counts at baseline [19].

For each value of C,, we estimated the statistical
power to detect the suppression impact G by estimat-
ing G® for S=100 simulated data sets and calculating the
proportion of estimates that were significant based on a
two-tailed p-value of less than 0.05 [65]. Inference was
performed in Stata [66] [64].

Simulating step wedge CRCT designs
We simulated step wedge trial designs whereby clusters
are divided into sequences and the time at which the
intervention is implemented varies between sequences
(Additional file 1: Fig. S5). Interventions are timed to
begin at the start of fixed time periods; here we assume
that each period lasts 1 year. We chose a design with
three sequences and two time periods, with the clusters
in the first sequence receiving the intervention in both
periods, and the clusters in the second sequence receiv-
ing the intervention in the second period only. Clusters
in the third sequence do not receive the intervention and
serve as controls throughout the trial. As above, we simu-
lated a year of baseline mosquito sampling for all clusters,
so each simulated data set covered a three-year period.
We simulated data sets for step wedge designs varying
the number of clusters per sequence, C, where the sim-
ulated data for each cluster and sequence was obtained
by selecting random posterior draws of the counts y;
for all houses and months in the three-year period. We
multiply y; = in the clusters receiving the intervention by
the suppression effect 1-G as described above. We simu-
lated 100 data sets for each value of Cg. Due to the small
numbers of clusters that we consider in our simulated
trials, we estimate G* for each data set using a within-
period analysis [51], again adjusting for the baseline
mosquito counts in each cluster. We estimate the inter-
vention effect using the same linear regression model as
described above for the parallel trial design (Eq. 4). Con-
fidence intervals for G* were estimated using a permuta-
tion test [51] with 500 permutations. Statistical power for
each value of Cs was calculated as the proportion (out
of §=100) of estimates that were statistically significant
based on a p-value of 0.05.
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Simulating suppression on a single vector species

Species identification was performed on mosquitoes col-
lected by PSC for samples collected from January 2017 to
December 2019, as discussed above. For these years, we
simulate the number of female An. coluzzii collected in
each house, month and village, E“;lmv, by:

Eva = ﬁmv zs/shm" (5)

Here, Sy,,,, is number of female mosquitoes in the sub-
set that were retained for species identification in house
h, month m and village v. Z° is a random variable sam-
pled from a binomial distribution with a number of trials
Sumy and a mean probability equal to the proportion of
Shmv that were identified as An. coluzzii (denoted pj, )
by genotyping. The number of female An. gambiae col-
lected in each house, month and village,gzmv, was simu-
lated in the same way. We note that Sy, and the species
composition of these samples varies across years in the
PSC data, and our simulated counts Ezmv and §;mv incor-
porate this yearly variation (see Additional file 1 for fur-
ther details).

We simulated data sets for step wedge and parallel
CRCT designs in a similar way to the above methodology
for simulating counts across all species (y;,, ). For each
cluster, the simulated data for each year is obtained by
selecting random posterior draws to calculate the counts
Yy for all months. Corresponding values of ¢;, = and
g,y Were then calculated using Eq. 5. For parallel designs
we simulated S=100 data sets for each value of the num-
ber of clusters per arm, C,; for step wedge designs we
did the same for each value the number of clusters per
sequence, C. In the intervention clusters, values of szv
and g7 were multiplied by the suppression effect 1-G.
For each data set we estimated G*® using linear regres-
sion models similar to those described above for parallel
and step wedge designs (Eq. 4), modified to represent the
counts of only the target vector species:

log(C;) = log(1 - G/ + alog(Cy,) ©)

where C, is the mean counts per house of An. coluzzii
in village v over the trial period and 6":,3 is the mean
counts per house over the baseline period. The same
approach was used to model suppression effects acting
only on An. gambiae. Statistical power was again calcu-
lated as the proportion of the S=100 estimates that were
significant based on a two-tailed p-value of less than 0.05.

Simulating alternative sampling strategies

An important aspect of CRCT design is selecting
sampling strategies with sample sizes that are suf-
ficient to achieve the required statistical power but
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not unnecessarily large, leading to wasted resources.
We simulated CRCT data sets for a range of alter-
native monitoring strategies. We first restricted the
period of PSC collections to the rainy season months
of May—October, which is the period when the major-
ity of the mosquitoes are collected, by using only the
data for each cluster, y; , for months m =May-Octo-
ber inclusive. Second, we varied the number of houses
from which monthly PSC collections were made in
each cluster. We simulated data sets for different sam-
pling protocols where the number of houses sampled in
each village and month, H, was set to either H=1, 5,
10, 20 or 40 houses, noting that this sample size could
not always be attained for some clusters due to missing
data. Our methodology for generating these simulated
data sets is as follows. If the value of H was less than
the number of houses sampled per village and month
by the PSC collections, a subset of H houses was ran-
domly sampled without replacement from the full set of
houses from which mosquitoes were collected. If H was
greater than the number of houses sampled by the PSC
collections, house locations were sampled twice. We
note that, for Bana, Pala and Souroukoudingan, twenty
houses were sampled by PSC each month, whereas for
Bana Market, only six houses were sampled by PSC per
month. Thus, for clusters where data was drawn from
the Bana Market houses, the maximum number of
houses sampled was H=12.
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