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Thepotential of genedrives inmalaria vector
species to control malaria in African
environments

Penelope A. Hancock 1,7 , Ace North 2,7, Adrian W. Leach 3,
Peter Winskill 1, Azra C. Ghani 1, H. Charles J. Godfray 2,4, Austin Burt 5 &
John D. Mumford 3,6

Gene drives are a promising means of malaria control with the potential to
cause sustained reductions in transmission. In real environments, however,
their impacts will depend on local ecological and epidemiological factors. We
develop a data-driven model to investigate the impacts of gene drives that
causes vector population suppression. We simulate gene drive releases in
sixteen ~ 12,000 km2 areas of west Africa that span variation in vector ecology
andmalaria prevalence, and estimate reductions in vector abundance, malaria
prevalence and clinical cases. Average reductions in vector abundance ranged
from 71.6–98.4% across areas, while impacts onmalaria depended strongly on
which vector species were targeted. When other new interventions including
RTS,S vaccination and pyrethroid-PBO bednets were in place, at least 60%
more clinical cases were avertedwhen gene drives were added, demonstrating
the benefits of integrated interventions. Our results show that different stra-
tegies for gene drive implementationmay be required across different African
settings.

The global burden of malaria has substantially reduced since the turn
of the century, yet in recent years progress has stalled and the annual
rate of malaria-related deaths currently exceeds that in 20191. There is
an urgent need for new approaches, and one of the most promising
options is to use gene drive technologies2. Gene drives are genetic
elements that bias their own inheritance above what is predicted by
Mendelien genetics, enabling their spread in populations where
introduced3–5. They may be used in malaria control either to suppress
vector populations by inhibiting an essential gene or to modify
populations by expressing a gene that reduces disease transmission.
The past decade has seen rapid progress in gene drive research,
spurredbymajor advances inCRISPR-cas9 technology, bringingus to a
point where both suppression drives6,7 and modification drives8,9 have
been created in laboratory populations of Anopheles mosquitoes10.

Field trials to test these technologies in natural settings are now being
actively considered11,12.

Mathematical models have helped to develop a theoretical
understanding of how gene drive releases could impact vector popu-
lations and reduce disease prevalence. The potential for gene drives to
suppress vector populations was initially investigated using analytical
models of diploid, sexually reproducing populations with no spatial
structure2,13. The models showed that suppression will be greatest
when the drive element has no effect on fitness in the heterozygote
(one-copy) state, and when the target is a female trait such as egg
production. These insights have been instrumental in the recent
development of CRISPR-cas9 gene drives targeting female fertility7,14.
The gene drive described by Kryou et al.7, for example, has been
engineered to target a female-specific exon in thedoublesex (dsx) gene
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in Anopheles gambiae mosquitoes, a highly conserved gene that is
essential for sex determination and fertility. The gene drive construct
has sincebeen shown to spread rapidly through large cagepopulations
of An. gambiae resulting in full population suppression6.

Models have also explored how spatial structure will affect the
impact of gene drives on vector populations15–20. A key insight is that a
suppression gene drivemaynot lead to extinctionof the target species
across an entire landscape, even if it tends to eliminate populations
locally. This is because the target species may become extinct in some
parts of a landscape while persisting in other parts, where the gene
drive may be absent. Over time the extant populations can recolonise
the habitat where local elimination has occurred, yet if the gene drive
remains in some other parts of the landscape it may eventually return
and re-suppress. These spatial dynamics will be influenced by numer-
ous factors including seasonality16–18, dispersal propensity19, the fre-
quency of inbreeding and strength of inbreeding depression19,20, and
the specifics of the gene drive construct19,21. Gene drive spread is pre-
dicted to be most disrupted in environments where the mosquito
population is composed of sparsely distributed subpopulations15,16,18,
where there is a high degree of seasonality16,18, or where the popula-
tions have a high tendency to inbreed19,20.

In anticipation of the first gene drive field releases, models have
increasingly been customised to specific malaria-endemic
locations16–18,22–24. Spatially explicit models that include human
malaria infections have considered the impacts of both population
suppression16,22 and replacement23,25 gene drive strategies on malaria
control, alone and in combination with insecticide-treated bednet
(ITN) usage. Simulations of population suppression using a driving-Y
construct (which spreads because males produce more Y than X
gametes) in a series of625 km2 areaswithin theDemocraticRepublic of
Congo predicted that the most effective gene drives could eliminate
malaria in areas where the target vector species was responsible for all
malaria transmission22. Versions of the same model investigated
releases of genedrives for vector populationmodification in a 300 km2

area in Burkina Faso, and predicted that malaria elimination would be

possiblewhengenedriveswere combinedwithhigh rates of ITNusage,
assuming the gene drive caused a 70% reduction in mosquito-to-
human transmission23.

To furtherour understandingof howgenedrives couldperform in
a variety of African settings, we develop a new approach to modelling
gene drive impacts that incorporates location-specific details of vector
ecology and malaria epidemiology. We extend the large-scale model-
ling approach of North et al.18 to incorporate high resolution geo-
graphic data layers representing human settlements, rivers and lakes,
vector population abundance, and species composition. We combine
this with a model of malaria transmission dynamics that estimates
transmission intensity in a region accounting for changes in the cov-
erage of vector control and human treatment interventions over
time26,27. These includemainstay interventions such as Indoor Residual
Spraying (IRS), standard pyrethroid-only insecticide-treated bednets
(ITNs) and drugs for malaria treatment and prevention in humans as
well as newer approaches including new types of ITNs28 and vaccines29.

We predict the impacts of releasing population suppression gene
drives targeting the dsx gene on vector populations, malaria pre-
valence and clinical cases in sixteen areas, each ~12,000 km2, located
across West Africa. Female mosquitoes that are homozygous for the
gene drive are sterile and unable to blood feed or transmit the malaria
parasite. In each area we model gene drive releases in each of three
vector species groups in the genus Anopheles: An. funestus, An. ara-
biensis and the closely related species pair An. gambiae and An.
coluzzii. We investigate the factors affecting the extent to which gene
drive releases suppress vector populations, including the fitness cost
incurred by the gene drive as well as variables affecting population
spatial structure in different landscapes. We then estimate the impacts
on malaria burden depending on which species group is targeted.
Motivatedby concerns about transmissionbyother vector species that
are less well surveyed or invading, we investigate how impacts on
malaria depend on the presence of an additional vector species that is
not one of the target species considered in our analyses. Other species
from the An. gambiae complex contribute substantially to
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Fig. 1 | The areas of west Africa in which we model the impacts of gene drive
releases. aThe sixteen areas are coloured according to the estimated prevalenceof
P. falciparummalaria in humans residing in the area in 201935 (see Methods). Each
area is labelled according to the countries within the area, and numbers in brackets
show the estimated number of settlements in the area. Grid lines divide the region

into areas of 1° in latitude by 1° in longitude. b An example of the landscapemodel
for The Gambia/Senegal area showing the estimated settlement locations (black
dots), localities (polygons) and the estimated number of mosquitoes associated
with each settlement. Data show the estimated annual maximum number of mos-
quitoes in the year 2018.
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transmission30, and cryptic species harbouring Plasmodium infections
have been discovered31 and may also contribute to transmission. Also,
An. stephensi, an urban malaria vector, has invaded into east Africa in
the last decade and has recently been found in parts of west Africa32.

To assess how gene drive strategies can act alongside other new
interventions to improve malaria control, we investigate the perfor-
mance of gene drive releases alone and in combination with two other
new interventions that are currently being implemented widely in
Africa. Firstly, we model a rollout of the RTS,S vaccine, which has
shown an efficacy of 36% against clinical malaria33. Secondly, we
simulate switching to pyrethroid-PBO ITNs, which are next-generation
insecticide-treated bednets impregnated with the synergist piperonyl
butoxide (PBO) that have been shown to reduce malaria infection risk
by 63% compared to pyrethroid-only ITNs34. We discuss how our

results can guide the design of gene drive interventions for malaria
control regarding the properties of the gene drive constructs, the
selection of target species and release areas, and strategies for com-
bining gene drives with other interventions. Our analyses assume that
the evolution of functional resistance to the gene drive, which would
subsequently render the gene drive ineffective in malaria contol, does
not occur (see the Discussion).

Results
We model gene drive releases in sixteen areas of 1° in latitude by 1° in
longitude located acrossWestern Africa (Fig. 1a),whichwere chosen to
span variation in a set of factors that may be important to gene drive
impacts. These include the prevalence of Plasmodium falciparum
malaria in humans, vector abundance and species composition, and

Fig. 2 | Population suppression predicted by the mosquito
metapopulationmodel. aThe suppressionof the total numberofbiting females in
each area in the years following gene drive releases at time zero in all vector species
groups. The boxes represent the interquartile ranges across 25 parameter sets that
differed inboth dispersal (ρn &ρb) and population size parameters (K1,a &K2,a) (see
Methods and Supplementary Material), with 5 replicate simulations per parameter
set. Thewhite lines in the boxes show themedians, the whiskers represent 1.5 times
the interquartile ranges, and the individual points are outliers. b–d. The sensitivity

of these results to (b) average population size, (c) population density (the number
of populations in the simulated area), and (d) themosquito dispersal propensity. In
each plot, the points show average 12 year suppression across simulations sharing
the same focal parameter, and we highlight the results of five simulation areas
(coloured; the grey lines/points represent the remaining eleven simulation areas).
All simulations followed the default release strategy, described in the text, of 1000
males released in 50 localities in all three species groups.
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seasonality, estimated from fine-resolution geospatial layers
(refs. 35–37 and see theMethods and Fig. S4). In each area, wemodel a
mosquito metapopulation where the mosquito populations are linked
to the locations of human settlements, which we estimated using fine-
resolution settlement footprint data. We used a Voronoi tessellation
around the settlement locations to define a locality covered by each
population (e.g. Figure 1b and seeMethods). Each locality has a specific
human population density, rainfall profile, distribution of water bodies
and vector species composition (seeMethods). The estimated number
of settlements/localities varied from 168 in the area located in
Cameroon to 4039 in the Lagos region of Nigeria (Fig. 1a).

For each of three vector species groups (An. funestus, An. ara-
binesis and the combination of An. gambiae and An. coluzzii), we
assume that the abundance of each population is regulated by the
amount of larval habitat, which is estimated from geospatial data on
weekly rainfall, the presence of rivers and lakes and the human
population size. The carrying capacities of each species group were
assumed to be proportional to their estimated relative abundances at
each location36. In each area, we scaled the carrying capacities by an
equal amount such that the seasonal peak number of mosquitoes in
the area is consistent with that estimated by a malaria transmission
dynamicmodel that relatesmosquito abundance to the entomological
inoculation rate (EIR) and the prevalence of P. falciparummalaria (e.g.
Fig. 1b and seeMethods). Among the sixteen study areas, we estimated
that the largest vector populations are in the Côte d’Ivoire area
(4:2 × 108 mosquitoes across all the species groups at the seasonal
peak), and the smallest are in the Cameroon area (3:4× 106 mosqui-
toes), a span of roughly two orders of magnitude.

Impacts of gene drive releases on vector abundance
Wefirst consider a genedrive that reduces the egg laying rateof females
carrying a single copy of the gene drive by 35% compared with wild
females (we later investigate sensitivity to this fitness cost). We further
assume that the genedrive allele is inheritedby97.5%of theoffspringof
male and female heterozygotes (gene drive pairedwith wildtype), while
the remaining offspring inherit either the wildtype allele (1.25%) or a
non-functional resistant allele (R2 allele; 1.25%) due to non-homologous
end-joining (NHEJ) during the homing reaction38. We assume females
are sterile if they do not carry at least one wildtype allele.

We modelled simultaneous releases in all three vector species
groups, and each simulation tracked the population dynamics for
12 years from the release date. For each area, we replicated the simu-
lations over a broad range of mosquito movement rates and popula-
tion sizes to account for uncertainty in these factors. Specifically, we
varied the dispersal propensity ρn (the probability an adult mosquito
moves to a connected locality on a given day, seeMethods) across five
values from ρn = 0.001 to ρn =0.025, and we varied the mosquito
population size across five values from half to double the area-specific
estimates (by adjusting carrying capacity parameters, see Methods),
resulting in 25 parameter combinations of dispersal and population
size. For each parameter combination, area, and species group, we
simulated releases of 1000 gene drive heterozygous male mosquitoes
in each of fifty randomly selected settlements. These releases were
predicted to result in substantial reductions in biting females in all
sixteen areas over 12 years (Fig. 2a). There were consistent differences
between areas, however, with some areas showing average suppres-
sion at 12 years following releases of >95% (Cote d’Ivoire, Nigeria/
Lagos, Liberia/Sierra Leone, Benin/Togo, Ghana, Northern Nigeria)
with the remaining areas showing average suppression of >70%, with
some realisations showing <50% suppression (Southern Mali and
Cameroon).

Sensitivity to population size, density, dispersal, and seasonality.
To understand these differences in suppression, we assessed the role
of four factors on the simulation results described above: average

population size, population density (the number of populations per
unit area), dispersal propensity, and seasonality (defined as the aver-
age number of dry weeks per year in an area; Table S2). A multivariate
regression model with these predictors explained much of the var-
iance in suppression across all simulations (R2 =0:79). There was a
positive relationship between suppression and each of the first three
factors, i.e. suppression is higher where mosquito populations are
larger (Fig. 2b), more densely packed (Fig. 2c), and if dispersal is at the
higher end of the range that we considered (Fig. 2d). Dominance
analysis39 revealed that the first three factors had similar power to
explain the variance in our suppression results; population size con-
tributed 30% of the overall R2 (standardised Dominance 0.30), dis-
persal contributed 32%, and population density contributed 29%.

The role of recolonisation rate. The commonality of the above three
factors—population size, population density, and dispersal propensity
– is that they all affect the numbers of mosquitoes moving between
populations. We contend that suppression increases with population-
levelmobility because highermobility increases genedrive spread into
wildtype populations, reducing the likelihood that wildtype mosqui-
toes recolonise habitats where local extinctions have occurred. If this
explanation is correct, we can expect reduced rates of populations
cycling between extinction and recolonisation as mobility increases.

To test our assertion, we computed the rate at which populations
cycle through states of extinction and recolonisation for each simu-
lation. Specifically, we defined the local suppression si,d at locality i on
day d as si,d = 1� ni,d

n*
i,d
where ni,d is the number of biting females in that

population and n*
i,d the equivalent number from a simulation of the

same scenario except without gene drive releases. We defined a
recolonisation event in locality i as a transition from extinction
(si,d1

= 1) to a state of recolonisation (si,d2
< 0:5) in the time-series

si,1,si,2, . . .
� �

, and defined the population cycling rate to be the average
number of recolonisation events per year among the populations
where the gene drive was released. Each of the three explanatory
variables - population size, population density, and dispersal pro-
pensity - negatively associated with population cycling rate
(Fig. S1a–c). Moreover, we found a strong negative association
between population cycling rate and area-wide suppression (Fig. S1d).
These results support our assertion that the three explanatory vari-
ables affect suppression via their influence on population-level
mobility.

Variation in spatial dynamics. The effects of population-levelmobility
on extinction and recolonisation cycling, and thus suppression,
resulted in markedly different spatial dynamics in the different study
areas. In areaswith lowmobility, the wildtype allele frequently escapes
the influence of the gene drive allele to recolonise habitat where the
mosquito had previously become extinct. For example, in theWestern
Mali area where the populations are small and widely spaced, a typical
simulation reveals irregular waves of extinction followed by waves of
wildtype recolonisation such that the landscape is an ever-shifting
mosaic of neighbourhoods in different states (Fig. S2; a simulation of
gene drive dynamics inAn. arabiensis inWesternMali is viewable here)
[https://github.com/AceRNorth/Animations/blob/main/anim201.gif].
By contrast, in regions with larger and more numerous populations,
vacated habitat tends to be rapidly recolonised by neighbouring
populations that contain the gene drive such that a degree of popu-
lation suppression ismaintained (e.g.An. arabiensis in theCôted’Ivoire
area; Fig. S2; animation viewable here) [https://github.com/
AceRNorth/Animations/blob/main/anim211.gif]. The dynamics in
most of the study areas fell between these two types. A simulation in
the Southern Mali area, for example, shows that local extinctions are
typically recolonised by neighbouring populations containing the
gene drive, yet there are also occasions where populations become
free of the gene drive and the wildtype allele temporarily spreads
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locally (Fig. S2; animation viewable here;Anarabiensis) [https://github.
com/AceRNorth/Animations/blob/main/anim203.gif].

Sensitivity to heterozygote gene drive fitness. Previous studies of
female fertility gene drives have highlighted the importance of the
effect of the gene drive on fertility in heterozygous females13,18, which
we now consider (Fig. 3). Predicted suppression is zero in the extreme
case of heterozygous sterility, because such a drive allele will not
increase from rare even in a local well-mixed population13,18. As the
fitness of heterozygous females increases from zero, the predicted
12 year suppression gradually increases in all study areas, up to a fit-
ness of about 0.4 (meaning that one-copy females produce 60% fewer
eggs than wildtype females). Indeed, up to this fitness level, the pre-
dicted suppression in all sixteen areas is near identical. As fitness
increases further, the study areas diverge in predicted suppression as
discussed above. Across all areas, however, suppression tends not to
increase as heterozygous fitness levels increase beyond 0.5.

To understand these fitness effects we must consider how the
gene drive allele affects individual populations. If the fitness of het-
erozygous females is low (0–0.4), the drive allele will rarely become
locally fixed. Instead, it will rise to an equilibrium frequency with both
the wildtype doublesex gene and R2 alleles being present. This equi-
librium results in population suppression rather than extinction, to a
degree that depends on the drive allele fitness18. Such a gene drive will
thus tend to spread radially from its release rather than induce
extinction and recolonisation dynamics, which is why the predicted
results are similar in all the areas we consider. At fitness levels greater
than ~0.4, local suppression more frequently causes local extinction,
thereby causing a switch to extinction and recolonisation dynamics,
whose precise form will depend on the area.

Impacts of gene drive releases on the malaria burden
For each of the sixteen areas, weuse ourmalaria transmission dynamic
model to compare the impacts of gene drive releases in each of the
three vector species groups on the prevalence of P. falciparummalaria
in the human population. In each area, we parameterise the model to
approximate historical trends in malaria prevalence in humans over
the period 2000–2018 accounting for changes in the coverage of
malaria control interventions throughout this time, including vector
control interventions such as ITNs and IRS, and drug treatments and
SMC. This model assumes that the human population is well-mixed
throughout each modelled area (see Methods). We first consider the

impacts of releases in a single vector species group only (Fig. 4; blue,
green and red lines and markers show releases in An. funestus, An.
arabiensis, and both An. gambiae and An. coluzzii respectively).

In the majority of areas, the greatest reductions in prevalence are
found when releases occur in the An. gambiae/An. coluzzii group
(Fig. 4; Senegal/Guinea Bissau, Ghana, Nigeria (Lagos), Cameroon,
Sierra Leone/Liberia, Guinea, Togo/Benin, Liberia, Côte d’Ivoire).
These areas have a high relative abundance of An. gambiae and An.
coluzzii (Fig. 4). Moreover, these two vector species have higher rates
of blood feeding on humans compared to An. arabiensis, which takes
more blood meals from non-human hosts (see the parameter Q0 in
Table S4). Targeting these species is thus more effective in reducing
transmission compared to targeting An. arabiensis. When releases
occur in An. gambiae/coluzzii, the five areas with the greatest relative
reductions in prevalence were 68% (95% central quantile: 37–86%) in
Senegal/Guinea Bissau, 65% (CI: 51–82%) in Nigeria (Lagos), 64% (CI:
44–91%) in Ghana, 40% (CI: 29–51%) in Sierra Leone/Liberia, and 38%
(CI: 28–49%) in Guinea. Larger relative reductions in prevalence
occurred in areas where the malaria prevalence prior to the releases
was relatively low, such as in Senegal/Guinea Bissau, Nigeria (Lagos)
and Ghana because reductions in transmission have larger impacts on
prevalence at lower initial prevalence levels (as discussed further
below). Releases in An. arabiensis produced strong reductions in pre-
valence in Niger/Nigeria and northern Nigeria (Fig. 4a), which are
northern areas where An. arabiensis is the predominant vector. In
these two areas, pre-release malaria prevalence was low, and releasing
in An. arabiensiswas able to halt malaria transmission. Releasing in An.
funestuswas the best strategy inWesternMali, SouthernMali, Western
Burkina Faso and Benin/Burkina Faso (Fig. 4).

We next compare releases in a single vector species group with
releases in all three vector species groups simultaneously. The latter
strategy results in much greater reductions in prevalence that exceed
the additive effects of releasing in each of the three vector species
groups individually. After >5 years from the release date, prevalence
remains below 5% in all areas, except for Liberia and Cameroon, where
prevalence remains at 5–10% (Fig. 4; dark green triangles). Strong
reductions in prevalence occur when releases are made in all vector
species because the relationship between malaria transmission and
prevalence is non-linear, with prevalence falling away rapidly once
malaria transmission drops to low levels (Fig. S3).

Impacts of gene drive releases in different species combinations.
We now compare a range of release strategies that target different
combinations of vector species to investigate the reductions in the
disease burden that could be achieved, as measured by the numbers
of clinical malaria cases. Here, we also consider alternative scenarios
where an additional non-target vector species is present, to represent
the likely possibility that other vector species may contribute to
transmission. We model the impacts of releases targeting An. gam-
biae and An. coluzzii only (Fig. 5, bars labelled GC), An. gambiae, An.
coluzzii and An. arabiensis (Fig. 5, bars labelled GCA), and all three
vector species groups (Fig. 5, bars labelled GCAF). In the case where
releases occur in all three vector species groups, we consider addi-
tional alternative scenarios in which a non-target vector species is
present in the area with a relative abundance of 10% (GCAF*10) and
20% (GCAF*20) of the combined abundance of the three vector
species groups targeted by gene drive releases. We assume that this
non-target species is identical to An. arabiensis in terms of all
demographic and behavioural parameters (see Methods). We mea-
sure impacts by the cumulative number of clinical malaria cases
averted in children aged 0–5 years over the 12 year period following
releases. We also calculate the cumulative number of cases occurring
over the period and show the proportional as well as absolute
reductions in cumulative cases in each area achieved by each release
strategy (Fig. 5).

Fig. 3 | The sensitivity of predicted population suppression to the fitness of
heterozygous females. The points represent the total suppression of all three
species groups 12 years after releases in each species group, averaged across 5
replicate simulations. All other model parameters are set to their default values
(Table S3).
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Gene drive releases in the An. gambiae/An. coluzzii species group
(GC) reduced the average number of cumulative clinical cases across
the sixteen areas by as much as 70% (19–100%) in Senegal/Guinea
Bissau. In many areas, releasing gene drives in An. arabiensis, An.
gambiae and An. coluzzii (GCA), had a modest additional benefit
compared to releasing in An. gambiae and An. coluzzii only (GC)
(Fig. 5a; Côte d’Ivoire, Liberia, Togo/Benin, Guinea, Cameroon, Wes-
tern Burkina Faso, Nigeria (Lagos), Ghana). In these eight areas, the
greatest additional benefit of releasing in An. arabiensis occurs in the
Western Burkina Faso area where the average reduction in clinical
cases increases to 37% (14–66%) from 19% (0.05–41%). In areas with
lower pre-release transmission levels (Fig. 5a, top panel), there is often
a much greater additional benefit to releasing in An. arabiensis. For
example, in the Niger/Nigeria area, gene drive releases in all An. gam-
biaecomplex species (GCA) averted 37,728 (5630, 75,552) clinical cases
per 100,000 children over the 12-year period, which is a 97% reduction
in average cases compared to a scenario where no releases occurred.
This release strategy also achieved large reductions in cases in north-
ern Nigeria, Western and Southern Mali, Senegal/Guinea Bissau, and
The Gambia/Senegal (Fig. 5a). This is due to the predominance of An.

arabiensis in these areas and their relatively low pre-release malaria
prevalence (Fig. S3).

In most areas, releasing in all three vector species groups (GCAF)
givesmuch greater benefit compared to releasing only in species from
the An. gambiae complex (GCA), even when a non-target vector spe-
cies is present (Fig. 5a). This strategy achieved large reductions in
absolute numbers of clinical cases in the highest transmission settings,
such as Côte d’Ivoire, Liberia, Togo/Benin and Benin/Burkina Faso
(Fig. 5a, bottompanel). For example, in Côte d’Ivoire, 421,153 (344,678,
481,496) clinical cases per 100,000 children were averted over the 12-
year periodby releasing in all three vector species groupswhere a non-
target vector species had a relative abundance of 20% (GCAF*20). This
represents a 69% reduction in average cumulative cases compared to a
scenario where no releases occurred. The corresponding reduction in
average cumulative cases in Côte d’Ivoire achieved by this strategy
when no non-target vector species were present (GCAF) was 88%
(Fig. 5b; GCAF).

Impacts of gene drives combined with new interventions. New
interventions applied concurrently with gene drive releases have the

Fig. 4 | Impacts of gene drive releases in different vector species groups on the
prevalence of P. falciparum malaria. Markers show the average annual pre-
valenceofP. falciparummalaria in each year following gene drive releases, in either
An. arabiensis (green), An. funestus (blue), both An. gambiae and An. coluzzii (red),
or in all four vector species (dark green). Markers and error bars show the means

and the 95% central quantiles, respectively, from 125 simulations. Pie charts show
the proportion of each of the three vector species groups in each area. Columns
(a–d) divide the sixteen areas into the quartiles of the average annual prevalence in
the year prior to gene drive releases, where (a–d) show the first, second, third and
fourth quartiles, respectively.
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potential to reduce the malaria burden to lower levels, which will be
especially critical when gene drives are not able to target all vector
species.We estimate the reductions in clinical malaria cases that could
be achieved by combining gene drives with two other more recent
interventions, RTS,S vaccines and switching from pyrethroid-only to
pyrethroid-PBO ITNs, where we assume that switching between ITN
types does not change the ITN coverage across the human population
in each area (see Methods). We show the impacts of combining gene
drive releases with these other interventions for the top 50% of areas
with the highest pre-release malaria prevalence (Fig. 5b), because the
impacts of combining interventions are greatest in high transmission
settings.

In most of the high transmission areas, when the vaccination and
pyrethroid-PBO net interventions are in place gene drive releases
produced substantial added benefit in averting clinical cases (Fig. 5b).
Gene drive releases in An. gambiae and An. coluzzii (GC) increase the
average number of cases averted by at least 60% (in western Burkina
Faso) to as much as 170% (in Liberia) across the eight areas, relative to
when vaccines and pyrethroid-PBO net interventions are applied

without gene drive releases (Fig. 5b, comparing orange patterned bars
versus white hashed bars). Additional releases in An. arabiensis (GCA)
increase the average number of cases averted by at least 116% (in
western Burkina Faso) to as much as 226% (in Guinea) across areas.
Releasing in all three vector species groups (GCAF) increases the
average number of cases averted by at least 210% (in Togo/Benin) to as
much as 397% (in Côte d’Ivoire), or by at least 180% (in Togo/Benin) to
as much as 332% (in Guinea) when a non-target vector species has a
relative abundance of 20% (GCAF*20). The number of cases averted by
combining interventions is, however, less than the sum of the cases
averted by each intervention in isolation. This is because an interven-
tion averts more cases (in absolute terms) when case numbers are
higher, therefore additional interventions lower the number of cases
that are averted by each intervention.

Discussion
Malaria is one of the most harmful infectious diseases afflicting
humans and continues to cause severe mortality, especially in Sub-
Saharan Africa. Progress has been made over recent decades in

Fig. 5 | Impacts of gene drive releases onmalaria caseswhen implementedwith
and without vaccination and new types of ITNs. Releases in three different
species combinations are modelled, denoted GC, GCA and GCAF, where for the
third strategy the asterisks denote the presence of other non-target vector species
atdifferent relative abundances (see themain text).aRedbars show the cumulative
number of cases occurring in children aged 0–5 years over the 12 year period fol-
lowing the implementation of gene drive interventions in each area. Hashed bars
show the cumulative number of cases averted by gene drive releases compared to

the counterfactual scenario where no gene drive release occurred. b For the eight
areaswith the highest pre-releasemalaria prevalence, red bars show the cumulative
number of cases occurring when gene drive releases are combined with RTS,S
vaccination and switching to pyrethroid-PBO ITNs. Orange patternedbars show the
cumulative number of cases averted by applying both RTS,S vaccination and
pyrethroid-PBO ITNs, and hashedbars show the additional number of cases averted
when gene drive releases are implemented in combination with RTS,S vaccination
and pyrethroid-PBO ITNs. Data are shown per 100,000 children.
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reducing this burden, and new control measures have recently been
introduced or are in development. Population modelling can be
important in optimally deploying existing and future interventions,
and is required as part of the regulatory process to assess the safety
and efficacy of novel techniques such as gene drive12. However, there
are numerous challenges to modelling a complex system involving
humans, a pathogen and multiple vectors across broad geographic
areas with many varying biophysical and socioeconomic factors.

We develop here a novel approach to modelling gene drive
interventions for malaria control that includes entomological and
epidemiological processes, and incorporates spatially-specific para-
meter inputs. It differs from previous models in being able to track
entomological interventions through to clinical outcomes, and in its
ability to study the combined effect of control measures aimed at
insects and humans, as well as how local conditions affect the success
of disease suppression. We use the approach to explore the potential
of releasing gene drives to suppress vector populations and hence
malaria prevalence in west Africa. We confirm existing results about
the importance of the molecular construct’s properties (in particular,
fitness in the heterozygote) and of the spatial structure of local vector
populations, and show that these conclusions apply in different spatial
settings. We first explore the relative advantages of introducing gene
drives into the most important of all known local vector groups, and
then look at the interaction of gene drivewith two othermajor current
interventions.

Our results show that, in almost all the areas we studied, while
gene drive releases targeting the An. gambiae species complex (An.
gambiae, An. coluzzii, and An. arabiensis) alone can have a significant
impact, targeting An. funestus as well gives much greater malaria
control. This resulted inmalaria prevalence dropping to zero in several
of the areas modelled, although we note that existing approaches to
gene drive modelling, including that developed here, do not account
for importation of infections from outside the area (see below). Mos-
quitoes in the An. gambiae complex are the most important African
malaria vectors and so have been the target of most gene-drive
research. Our findings support the importance of recent research into
developing An. funestus gene drives40.

Though a combination of interventions provides the strongest
disease suppression (seebelow), therewill be circumstanceswhere it is
difficult to achieve a high uptake of personal protection by public
health interventions39,41. For example, such interventions are clearly
difficult in places suffering civil strife or war where gene drive relying
either on natural spread or releases using UAVs (drones) may still be
possible. In such settings where malaria control using existing inter-
ventions is particularly challenging, our results indicate that genedrive
releases that target the multiple vector species responsible for trans-
missionwill be important to achieving strong epidemiological impacts.

While there are potential advantages of releasing a gene drive in
multiple vector species, the same impacts on malaria may occur after
single-species releases, though more slowly. Malaria transmission by
vector species that are not gene drive targets may eventually be
inhibited by interspecific spread of gene drives. A gene drive released
in a single vector species is likely to spread into closely related species
through hybridisation. High rates of hybridisation between An. gam-
biae and An. coluzzii have been observed42, and adaptive introgression
between the two species has driven rapid spread of genetic mutations
conferring insecticide resistance under selective pressure resulting
from the rollout of ITNs43. Gene drives impose strong selective pres-
sure and could thus also spread rapidly between these sibling species.
Rates of hybridisation between An. gambiae and An. arabiensis are
lower but still significant, with potential for adaptive introgression for
traits under selection44.

Of the existing interventions targeting malaria vectors, ITNs have
historically been responsible for the largest reductions in the malaria
burden in Sub-Saharan Africa45. Pyrethroid-PBO nets are replacing

pyrethroid-only ITNs in several African countries46. Aftermany years of
research there has been significant progress in malaria vaccinology,
particularly the RTS,S and R21 vaccines47, which are now being widely
deployed. Our results suggest that gene drive releases can produce
substantial additional malaria reductions in areas where these new
interventions are in place. In some areas, greater than 100% more
clinical caseswere avertedwhen controlwas supplementedby releases
in An. gambiae and An. coluzzii only, and over 300% when gene drive
was introduced into all major vector species. Thus even in areas with
good public health infrastructure and widespread adoption of other
interventions theremay be an advantage to also deploying gene drive.
We stress, of course, that gene drive technology is still at an early stage
of development and further research is required to confirm it performs
as assumed here and that it meets regulatory safety requirements.

Gene drive releases have high predicted epidemiological impact
through suppressionof the target vector species. Thoughwe identified
some variation in suppression that is dependent on local environ-
mental characteristics, for most parameter combinations we found
significant suppression in all landscape types. The highest suppression
occurred in areas where mosquito populations are both locally large
and spatially numerous, such as in Côte d’Ivoire and the Lagos region
of Nigeria, where the gene drive tends to spread with its wildtype
counterpart such that the suppression of individual populations is
largely maintained. Lower impacts were predicted in landscapes with
small and widely spaced populations, such as in Western Mali and
Cameroon, where thewildtype allele often escapes the influenceof the
gene drive to recolonise habitat. These spatial dynamics have pre-
viously been described as chasing dynamics20. Othermodelling studies
have noted the importance of landscape spatial structure, similarly
finding that suppression is higher where populations are more closely
packed15,16,18, though to our knowledge the significance of local popu-
lation size has not been previously recognised.

We have also shown that, for gene drives targeting the doublesex
gene, population suppression impacts are robust to the fitness of
heterozygous females up to a fitness cost of around 0.6, which is
consistent with results of earlier modelling analyses18. Unlike previous
studies16,18, we did not find a large effect of seasonality. It is possible
that previous studies over-estimated the role of seasonality per se by
not accounting for average local population size, which tends to be
smaller in regions with longer dry seasons.

There are important aspects of gene drive dynamics not con-
sidered in this analysis. For example, wehave only considered resistant
alleles that do not restore female fertility. Amutant allele thatwas both
resistant and functional would have a fitness advantage in populations
where the genedrive is present andwould potentially spread rapidly to
fixation13, thereby terminating population suppression. Concerns over
this possibility have motivated the development of gene drive con-
structs robust to simple mutational failure, such as multiplexed gene
drive systems incorporating CRISPR with multiple guide RNAs, which
greatly reduce the rate at which such resistant alleles evolve48–50.
Theoretical models of the evolution of resistance to gene drives
emphasise an important roleofmosquito population size and standing
genetic variation in determining the likelihood of evolution51,52. Con-
sideration of resistance evolution in spatially structured populations
across different ecological contexts is beyond the scope of the present
study, but will be important to address in future work.

There are also uncertainties about different aspects of mosquito
ecology that may affect the outputs of our model. The density-
dependent processes regulating mosquito populations are poorly
understood in Anopheles species. Assumptions about the functional
form of density dependence can strongly affect predicted population
suppression and hence disease outcomes53,54. We also need to better
understand dispersal in Anopheles to improve our predictions about
rates of spatial spread of gene drives, and our analyses do not include
possible long-range dispersal55, which could lead to gene drive
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constructs jumping across large areas to encroach into new regions.
We need more understanding of what mosquitoes do during the dry
season in highly seasonal environments such as the Sahel—do they
aestivate, persist in local refugia, or recolonise through long distance
dispersal56? Previous modelling has indicated that aestivation may
slow gene drive spread but not greatly alter the eventual suppression
in an area18. Finally, our analysis has not considered how suppressing a
particular vector species may affect the dynamics of cohabiting spe-
cies, which may include vector species not targeted by a gene drive
intervention, although other modelling studies conclude that thismay
be important57.

Our analysis of the epidemiological impacts of gene drive releases
uses a malaria transmission dynamic model that was previously fitted
to data on the relationship between the entomological inoculation
rate, parasite prevalence and clinical disease frommultiple sites across
Africa26,58. This modelling approach makes several simplifying
assumptions, including spatial homogeneity of transmission dynamics
such that an individual’s risk of infection does not depend on their
spatial location (or place of residence) within a modelled area. Our
analysis does not consider human movement, or transfer of infection
in and out of an area through human migration, and therefore cannot
accurately predict malaria elimination outcomes which are strongly
dependent on rates of importation of infections59. The models of
malaria control interventions embedded in this framework60, including
sub-models describing the effects of different types of ITNs and IRS28,
drug treatments61 and vaccines29 have only been tested in a small
number of settings. Thus, our results are best interpreted as estimates
of the variability in potential gene drive impacts across different Afri-
can settings, rather than precise predictions of outcomes in particular
locations.

Despite the inevitable simplifications that need to be made to
model malaria dynamics over broad spatial scales, we believe that our
models capture the key factors influencing the epidemiological
impacts of population suppression gene drive releases. Our approach
is based on Africa-wide geospatial data layers and therefore could be
applied to any area in Africa. Modelling will play a critical role in
deciding how these gene drives should be trialled and eventually
deployed, and we hope our analysis is a useful contribution to these
discussions.

Methods
Selecting representative environments across west Africa
We consider the impacts of gene drive releases within a rectangular
region of western Africa (Fig. 1). We predicted impacts within a set of
localised areas corresponding to a selection of cells from a grid that
divides the region into areas of 1° in latitude by 1° in longitude
(~111 kmx 111 km).We selected a set of sixteen areas chosen to span the
range of variation in theprevalenceof P. falciparummalaria in humans,
as well as in a set of environmental characteristics. Specifically, we
aimed to capture variation in mosquito vector species composition,
which is an important determinant of the impact of gene drives on that
target particularmosquito species. We also aimed to capture variation
in mosquito abundance and how this varies seasonally, because this
may influence the spread and persistence of gene drives15,18. Malaria
vector abundance is strongly correlated with rainfall62 and also
depends on the number of humans fromwhom to source bloodmeals.
We used two variables describing rainfall patterns to represent geo-
graphic variation in the amount and seasonality of rainfall: the long
termaverage annual rainfall and themaximumnumber of dryweeks in
a year (37; Table S2). To represent variation in human population size
we used estimates from WorldPop63. Further details about how these
variables were created for each area are provided in Section S4.
Sources of geospatial data are provided in Table S1 and the methods
used to aggregate fine resolution geospatial data to produce area-level
values are described in Table S2.

We grouped all the 1° by 1° areas within our west African region
into a set of four clusters differentiating the areas with respect to the
above five variables describing mosquito population characteristics,
namelymalaria prevalence, vector species composition, mean rainfall,
maximum number of dry weeks and human population size (Sec-
tion S4). Clusters were identified using hierarchical cluster analysis.We
set a requirement on our set of selected areas that there must be at
least one area within each of these four clusters and that theremust be
four areas within each quartile of the mapped malaria prevalence
values covering the region (SectionS4). To represent national interests
in the malaria control potential of gene drive releases, we also set a
requirement on our selected areas that theremust be at least one area
in every country within our region of western Africa, excluding coun-
tries (Chad, Mauritania and Central African Republic) whose area is
mainly outside the boundary of the region. The sixteen selected areas
vary widely with respect to malaria prevalence and the selected mos-
quito population characteristics (Fig. S4).

Modelling gene drive dynamics and their epidemiological
impacts
We developed a mathematical model to investigate the epidemiolo-
gical impacts of gene drive releases in each of our selected areas, using
location-specific parameter values to represent the dynamics of gene
drives in mosquito populations and malaria transmission in humans.
Within each area, our mechanistic model represents mosquito popu-
lation dynamics at the level of human settlements using a spatial
metapopulation modelling framework adapted from the approach
developed by North et al.17. The mosquito model captures the influ-
ence of the spatial structure of mosquito vector populations on the
spread and persistence of gene drives following localised releases17.
Human infection dynamics aremodelled at the level of each area using
an individual-based model of malaria transmission dynamics that
builds on the open-source malariasimulation package in R60 (Fig. S5
and Section S7). Details of themodellingmethodology are given below
and in the Supplementary Material, and the model parameter values
are described in Tables S3–S9.

Modelling mosquito and gene drive dynamics
Here we give an overview of the mosquito metapopulation model,
while we refer the reader to the Section S6 for a more detailed
description. The model parameters are listed in Table S3 of the Sup-
plementary Material. We assume that mosquito populations are loca-
ted at sites of human settlements, on the basis that the mosquito
species being modelled are largely anthropophilic. The settlement
locations were inferred from World Settlement Footprint data (64;
Table S1), which demarks the presence or absence of buildings at 10m
resolution across the studied area.

For each species, each population is composed of juveniles, adult
males, virgin females, and mated females (we do not consider egg or
pupal stages). Following North et al.18, we model three possible alleles
at the gene drive locus: a wildtype allele, the drive allele, and a non-
functional allele that is resistant to driving. The simulation model
tracks the daily changes to the numbers of each type of individual that
result from births, deaths, and dispersal between nearby populations.
All three life-cycle processes (births, deaths, and dispersal) are simu-
lated using pseudo-random draws from appropriate probability
distributions.

For each species and local population, we assume that juvenile
mortality increases with the number of conspecific juveniles, on the
basis that larvae compete for food. The strength of competition
depends on the amount of larval habitat at the given location and time
of year. In each population, we assume there is a (low)baseline amount
of larval habitat that is present all year round (scaled by a factor K0,a),
an amount that depends entirely on rainfall (scaled by K1,a), and an
amount that depends on water-courses whose extent is partially
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dependent on rainfall (scaled by K2,a). To manipulate population size
at the level of the 1°by 1°areas, we varied the latter two factors K1,a and
K2,a in tandem (we assumed K1,a =K2,a).

The larval habitat parameters were estimated using rainfall data
from the ERA5 climate reanalysis37, the proximity to water courses
(rivers and lake edges65); the number of humans determined from the
WorldPop dataset63 and, finally, the relative abundance of the species
under consideration from species distribution data36 (Tables S1 and S2
and Section S6.2). The resulting model of larval habitat gave rise to
time-varying carrying capacities for each species and location.

The mortality rate of adult male mosquitoes is assumed to be the
same for all species groups and locations, while adult female mortality
rates are species and area specific due to their interactions with
insecticide-based interventions, namely ITNs and IRS. Exposure to
insecticides varies between vector species due to species-specific
proportions of blood meals taken on humans (Table S4) and rates of
human biting outdoors, indoors or in bed (Table S8). Exposure also
differs between areas due to variation in the coverage of ITNs and IRS
across the human population.

Females mate at most once during their lives at a rate that
depends on the number of adult males in the local population. After
mating, a female lays a randomnumber of eggs eachday until she dies,
with randomised egg genotypes that depend on the genotypes of her
and her mate.

Both male and mated female adults may move between nearby
populationswith distancedependent dispersal propensity.We assume
dispersal is possiblebetweenpopulations if they arewithin amaximum
distance apart which is set to 10 km, though below this distance the
rate of dispersal is greater between nearer than farther settlement
pairs. Adultmosquitoes disperse among these populations at a rate ρn

(per day permosquito). In addition, we assume that dispersal between
settlements is possible if their localities share a border irrespective of
the distances between the settlements, ensuring that even in quite
isolated regions there is some connectivity between neighbouring
settlements. Adults disperse among populations in thisway at a rate ρb

(per day permosquito), andwe fix the ratio of ρn : ρb when varying the
overall dispersal rate. We set ρb =ρn=100 such that the majority of
dispersal is distance rather than border dependent.

Simulation area and period
While the study areas are 1° by 1° degree squares, in each case we
simulated a 3° by 3° degree areas centred on the study area to allow a
onedegree buffer fromeach edge (unless this overlappedwithOcean).
We included these buffer areas to minimise artefactual edge effects
that might arise if we instead assumed no migration in and out of the
study areas. All the reported results (e.g. of mosquito population
numbers and suppression) are study-area based—we discarded the
simulation data from the buffer areas.

Our simulations of gene drive andmalaria transmission dynamics
(described below) cover a 43 year period. During the first 10 years, all
vector control and human treatment interventions are assumed to be
absent, and the model reaches equilibrium levels of mosquito abun-
dance and malaria infections. Over the following 19 years, we model
time-varying coverages of malaria control interventions, as described
below. We model the release of gene drive mosquitoes on day 150 of
the second year of the final 14 year period to simulate gene drive
impact for 12 years post release. Throughout this final period we
assume that the coverages of insecticidal vector control and human
treatment interventions remain constant at the values of the year 2018.
We refer to the period 2000–2018 as the pre-gene drive period and the
following 14-year period as the post-gene drive period.

Modelling malaria transmission dynamics
We adapt a stochastic individual-based model of malaria transmission
and infection dynamics in humans that is described in detail in

previous studies26,27,58 to represent the impacts of gene drive releases
on the malaria burden in humans. This model is implemented in
malariasimulation60, which we modified to incorporate the suppres-
sion effect of gene drive releases on vector populations (code is
available on GitHub). We parameterise the model to represent the
epidemiological characteristics of each of the sixteen geographic areas
using location-specific data on human population densities, malaria
prevalence in humans, vector species composition and the impacts of
human treatment and vector control interventions. In eachareawe aim
to match model-predicted values of the average annual malaria pre-
valence in humans to data on average annual prevalence for each year
in the pre-gene drive period 2000–2018 by adjusting the estimated
total abundance of themalaria vector population in the area to give the
best agreement (see below). Further details of themalaria transmission
modellingmethodology are provided belowand in the Supplementary
Material, and the parameter values used in the model are detailed in
Tables S4–S9.

Human infection and immunity. Each area a has Ha humans, and we
assume thatHa is constant over timeand is estimated using data on the
number of humans residing in each area a63 (Tables S1 and S2). Each
individual is classified by their age (in days) and their infection status.
Within each area, the human population is assumed to be well-mixed,
with each individual experiencing an equal exposure to any mosquito
in the area includingwildtypemosquitos and those carrying genedrive
constructs or non-functional resistance alleles. The probability that an
individual is bitten by a mosquito is assumed to increase as they age66.
Following a bite from an infectious mosquito, a susceptible individual
can develop clinical disease or otherwise remain asymptomatic. A
proportion of those who develop clinical disease will develop severe
illnesswhich is associatedwith an increaseddeath rate. Theprobability
of each of these infection types depends on the individual’s level of
blood-stage immunity. A description of the mathematical model for-
mulation is provided in Section S7.1 and the model parameters are
detailed in Table S4.

Drugs for treatment and prevention. Individuals who develop clinical
disease have a probability f yT ,a of receiving treatment, which is
informed by data on the proportion of clinical cases that seek treat-
ment in area a in year ywithin the pre-gene drive period67,68 (Table S1).
The treatment given is either sulphadoxine-pyrimethamine and amo-
diaquine (SP-AQ) or artemisinin combination therapy (ACT) using the
drug artemether–lumefantrine (AL), where the time-varying efficacy of
each drug is parameterised according to the pharmacokinetic-
pharmacodynamic (PKPD) models developed by Okell et al.61. For
each year, the probabilities of individuals that receive treatment with
either AL or SP-AQ are given by data on the recorded proportions of
ACT and non-ACT treatment across all treated individuals in year k in
area a, denoted ACTk

a and SPAQk
a, respectively

67,68 (Table S1). Seasonal
malaria chemoprevention (SMC) is implemented in each year by
assuming that a proportion of children aged between 2 and 5 years
inclusive receive a dose of SP-AQ 1month before the highest annual
peak in total vector abundance. The probability that a child receives
SMC is given by data on the recorded coverage of SMC in area a in year
y, SMCy

a
67 (Table S1). Details of themodels of drug treatments and SMC

are provided in Section S7.3 and Table S5.

Insecticide-treated bednets (ITNs). The probability that an indivi-
dual uses a long-lasting insecticidal bednet (ITN) is given by the
estimated usage of ITNs in area a in year y, ITNy

a
39. Values of ITNy

a for
each area and year within the pre-gene drive period were calculated
using annual predictive maps of ITN usage41 (Tables S1 and S2). We
then estimated the annual rates at which new ITNs are distributed to
the individuals residing in areaa that were consistentwith the annual
usage values using the netz package in R69, noting that this
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methodology accounted for the estimated annual rates of house-
hold net loss (Section S7.4).

Models estimating the impacts of different types of ITNsonvector
mortality, including standard pyrethroid-only and pyrethroid-PBO
ITNs, have been developed based on data from experimental hut
trials28,70. Our implementation of these models is described in the
Section S7.4, and the associated parameter values are detailed in
Table S6. Throughout the pre-gene drive period, we assume that all
ITNs are standard pyrethroid-only ITNs.

Indoor residual spraying (IRS). The probability that an individual
resides in a house in area a that received indoor residual spraying (IRS)
with an insecticide of class c during year y within the pre-gene drive
period is given by the estimated coverage of IRS across individuals in
the area in year y, IRSya,c

71 (Table S1). We estimate the coverage of four
classes of IRS insecticide, organochlorines, pyrethroids, carbamates
and organophosphates, using the annual predictive maps of IRS cov-
erage developed by Tangena et al.71 (Tables S1 and S2), calculating the
average coverage value across all pixels in each area a for each year.
Models estimating how IRS efficacy is impacted by insecticide resis-
tance have been developed based on data from experimental hut
trials28,70. Our implementation of these models is described in the
Section S7.5, and the associated parameter values are detailed in
Table S7.

RTS,S vaccination. In line with the recommendation of the World
Health Organisation, we implement a four-dose vaccination strategy in
each of our modelled areas72. This involves giving children who reach
5months of age a primary three-dose series, followed by a booster
dose at the same time in the following year. We implement a model of
RTS,S vaccination thatmodels vaccine efficacy over timeby simulating
antibody decay29. We assume a vaccination coverage of 80% of eligible
children receiving the primary doses29 and the annual boosters (see
section S7.7 and Table S9).

Estimating vector abundances. The estimated total vector abun-
dance in each area was adjusted to match the model-predicted area-
wide annual malaria prevalences in the human population to data
values over the pre-gene drive period35 (Tables S1 and S2), accounting
for fluctuations in the coverage of human treatment, SMC and vector
control interventions throughout this period. This involved extracting
from the mosquito metapopulation model the total number of female
juvenilemosquitoes that complete development and emerge as adults
in each areaon eachdayof the simulationperiod.Weused thesevalues
to calculate the number of females of each vector species group
emerging relative to the maximum throughout the simulation period,
Πq,a,d as Πq,a,d = eq,a,d=êq,a. Here, eq,a,d is the number of females of
species group q emerging in area a on day d and êq,a is the maximum
numberof femalesof species groupq emergingon anyday throughout
the simulation period. These values Πq,a,d describe seasonal variation
in adult emergence, and how this is impacted by vector control
interventions, including insecticide-based interventions and gene
drives. We use these values as input to the malaria transmission
dynamic model to represent eq,a,d as eq,a,d = eaΠq,a,d , where ea is a
constant that represents the maximum adult female emergence
reached in area a throughout the simulation period. We note that this
assumes that Πq,a,d is independent of ea.

We calibrate the malaria transmission dynamic model by adjust-
ing ea tomatchmodel predictions of the annual average prevalence of
P. falciparum malaria in children aged between 2 and 10 years (inclu-
sive) for each year in the pre-gene drive period to the estimated pre-
valence obtained from the annual geospatial layers produced by the
Malaria Atlas Project35. We note that the earliest year in this period pre-
dates the rollout of ITNs in Sub-Saharan Africa, and so we assume that
mosquito abundance was unaffected by vector control interventions

prior to this time. Values of ea for each area are estimated using a
weighted likelihood function that upweights more recent
observations73. Further details of this methodology are given in
Section S7.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in these models come from open- source repositories
listed in Table S1.

Code availability
Simulation code for running the models of gene drive dynamics and
malaria infection dynamics is available on GitHub: https://github.com/
AceRNorth/WestAfricaModel (doi: 10.5281/zenodo.13785414)74 https://
github.com/pahanc/malariasimulation_import_mosq (doi: 10.5281/
zenodo.13789477)75. The code is a modification of R-package malar-
iasimulation v1.4.3, using R v4.3.0. Plots were generated in Mathema-
tica v14.0 and R v4.3.0.
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