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Abstract

Biting flies (Diptera) transmit pathogens that cause many important diseases in humans

as well as domestic and wild animals. The networks of feeding interactions linking

these insects to their hosts, and how they vary geographically and in response to

human land-use, are currently poorly documented but are relevant to understanding

cross-species disease transmission. We compiled a database of biting Diptera–host inter-

actions from the literature to investigate how key interaction network metrics vary

latitudinally and with human land-use. Interaction evenness and H2’ (a measure of the

degree of network specificity) did not vary significantly with latitude. Compared to

near-natural habitats, interaction evenness was significantly lower in agricultural habitats,

where networks were dominated by relatively few species pairs, but there was no

evidence that the presence of humans and their domesticated animals within networks led

to systematic shifts in network structure. We discuss the epidemiological relevance of

these results and the implications for predicting and mitigating future spill-over events.
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INTRODUCTION

Across taxa, species richness consistently decreases from equatorial

to polar latitudes (Lawrence & Fraser, 2020). This macroecological

pattern is linked to changes in the structure and organisation of

ecological communities. For example, increased species richness and

associated niche partitioning at low latitudes should increase both the

frequency and specificity of interspecific interactions such as mutual-

ism, competition and parasitism (Morris et al., 2014; Schemske

et al., 2009; Willig et al., 2003). Superimposed on these large-scale

patterns, anthropogenic habitat modification for agriculture and other

land-uses also has marked effects on diversity, community composi-

tion and species interactions (Meyer Steiger et al., 2016), and can

reshape interactions within a community, even in the absence of

biodiversity loss (Morris, 2010; Tylianakis et al., 2007).

Analyses of quantitative ecological networks documenting the

interactions among species, weighted by the interaction frequency

(Schleuning et al., 2012; Xing & Fayle, 2021), provide an approach for

understanding how communities are structured across space and time.

A growing number of network studies involving diverse taxa, locations

and contexts provide opportunities for synthetic analyses investigat-

ing large-scale ecological patterns (Xing & Fayle, 2021), such as trends

in specialisation with latitude (Morris et al., 2014; Schleuning

et al., 2012) and in response to land-use intensification (Tylianakis

et al., 2007; Weiner et al., 2014). Few studies, however, have explored

the relative influence of large-scale macroecological gradients and

more localised anthropogenic impacts on the structural properties of

networks of interacting species (Pellissier et al., 2018; Tylianakis

et al., 2007).

Here, we investigate how macro-ecological and anthropogenic

factors influence the properties of networks linking biting flies

(Diptera) and their vertebrate hosts. Feeding interactions between

Diptera and hosts can now be routinely established using molecular

analysis of insect blood meals. These interactions are of particular

Received: 12 October 2022 Accepted: 5 May 2023

DOI: 10.1111/mve.12671

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2023 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society.

Med Vet Entomol. 2023;37:675–682. wileyonlinelibrary.com/journal/mve 675

mailto:ben.bellekom@biology.ox.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/mve
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fmve.12671&domain=pdf&date_stamp=2023-06-01


interest, since biting Diptera are often vectors of a wide range of

pathogens including malarial parasites (Sinka et al., 2012), Bluetongue

virus (Baker et al., 2021), West Nile virus (Kilpatrick et al., 2005) and

Leishmania (Killick-Kendrick, 1999). These may infect humans,

domestic and non-domestic hosts, and cause significant damage to

public and health economics (Barber et al., 2010; Rushton &

Lyons, 2015; Sachs & Malaney, 2002). Moreover, their transmission

potential can co-vary with their interactions across land-use gradi-

ents (Meyer Steiger et al., 2016; Müller et al., 2019; Runghen

et al., 2021). We analyse biting fly–vertebrate interaction data from

a wide range of latitudes and across different habitat types to

explore the relative importance of latitude and land-use in structur-

ing interaction networks.

METHODS

Data compilation

Biting Diptera–host interaction data were extracted from the litera-

ture on insect blood meals, using a subset of the data compiled by

Bellekom et al. (2021). To limit bias, we restricted analyses to data

generated using PCR and DNA sequencing (Logue et al., 2016), and

excluded studies that used sampling methods and locations inappro-

priate for collecting a variety of biting Diptera species and subsequent

host blood meals. For example, those that used live host-baited

trapping methods, such as livestock and cattle-baited tents, were

excluded as blood meals would be heavily biased towards the bait.

Studies that provided data for a single biting Diptera species were

also excluded, as these do not provide network data. We also

excluded studies lacking site location details. For each remaining

study, we recorded site location and classified habitats into three

broad categories of anthropogenic landscape modification. Sites

where cultivated land or livestock were the dominant land-use were

categorised as Agricultural; those that referenced natural vegetation

with limited human presence were classified as Near-natural;

and those where sampling took place within, or around human

habitation were classified as Village/Urban. Where sampling was

carried out in more than one habitat type, separate networks were

generated for each reported habitat. Where habitat could not be

determined reliably from the published information (four cases), we

used satellite imagery (QGIS in combination with Google Earth) to

infer the habitat, using the same categories used for studies where

published information on habitat type was available. For example,

where satellite imagery indicated that the location of the study was

associated with a human settlement, the data were assigned to the

Village/Urban category.

Biting Diptera and hosts were resolved to species level, where

possible. Where a single species-level identification was missing for

a biting Diptera or host, nodes were simply labelled with the relevant

genus or family (e.g., Culicoides spp.). Where a genus contained mul-

tiple unknown species-level identifications, we checked whether

sympatric congeneric or confamilial species were likely to occur at

the focal location using field guides and online resources (GBIF.

org, 2021). As before, where no sympatric congeneric or confamilial

species occurred, nodes were resolved to the lowest level possible

(e.g., Anas spp.). Interactions where either the host or the biting

insect could not be resolved to genus or family level (or where more

than one species could occur in a single node) were removed to pre-

vent different species being combined into the same genus-level

node. In total, 18 biting Diptera and 28 host records were resolved

to genus or family level and 76 hosts, 14 biting insects and 119 inter-

actions were removed.

Data analysis

For each included study, we analysed species interaction data as

weighted antagonistic bipartite networks and calculated two net-

work metrics, interaction evenness (IE) and network specialisation

(H2’), chosen for their ecological and epidemiological relevance. IE

is a weighted network metric based on Shannon diversity that

describes the homogeneity of interaction frequencies across all

links in the network (E2 = H2/ln L, where H is Shannon diversity,

and L is the number of all links) (Blüthgen et al., 2008; Kaiser-

Bunbury & Blüthgen, 2015). Low IE values indicate contexts in

which a small number of species and their links dominate the com-

munity (Kaiser-Bunbury & Blüthgen, 2015). This is particularly rele-

vant if the dominant species are vectors or susceptible hosts. H2’

is a weighted network metric that quantifies the deviation of

observed interaction frequencies from those expected if interac-

tion frequencies were random (Blüthgen et al., 2006). A high

degree of generalism within our network would be expected to

facilitate transmission between phylogenetically dissimilar hosts

(Abella-Medrano et al., 2018). IE and H2’ values were calculated

using the networklevel function in the R package bipartite

(Dormann et al., 2008).

Variation in host and biting Diptera richness across latitudes

was explored using a linear model, including the total number of

blood meals analysed per network (a proxy for sampling effort) as

a covariate. We explored the extent to which variations in IE

and H2’ could be explained by habitat type and latitude using a

generalised linear model (GLM) with a Gaussian error distribution.

Absolute values for latitude (i.e., removing negative signs) were

used to combine data from the northern and southern hemisphere.

To control for the confounding effects of network size and species

richness, we included species richness (S = number of resource

species + number of consumer species), and log-transformed

matrix size (sum of all interactions within the matrix) in the GLM

(Galiana et al., 2019). Most of our networks (46 out of 47) com-

prised Diptera from multiple genera but drawn from a single fam-

ily; each network could therefore be classified by its dominant

family. In the case where multiple families were represented in a

network, we classified it by the dominant family (the family with

the highest number of interactions). Our models tested for the

effects of family as well as the two-way interaction terms between
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family and latitude and between family and habitat. This allowed us to

examine the influence of Diptera family on IE and H2’ values and how

these changed across latitude and between habitat types. Residuals

were visually inspected to check model assumptions. The statistical

significance of habitat type and latitude was assessed by comparing

simpler models to more complex models for variation in deviance based

F I GU R E 1 (a) Global distribution of the studies included in the analysis. Agricultural sites are represented by blue circles, Near-natural sites
by red triangles, and Village/Urban sites by yellow squares. Co-located symbols are studies that sampled in multiple habitat classifications and
were treated as separate networks in our analyses (Map data: Google Maps 2020). (b) The aggregated global network containing all host (right)
and Diptera (left) interactions, and Diptera (top)–host (bottom) interactions separated by habitat classification: Agricultural(c), Village/Urban
(d) and Near-natural (e). Node and edge widths are proportional to frequency of occurrence and are coloured by biting Diptera family
(Ceratopogonidae = dark blue, Culicidae = red, Glossinidae = yellow, Psychodidae = light blue and Simuliidae = orange).

LATITUDINAL AND ANTHROPOGENIC EFFECTS 677
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on a chi-square distribution (Mayi et al., 2020). Post-hoc analysis was

conducted to identify intra-factor significant differences, using Tukey’s

HSD (honestly significant difference) tests.

We used a null model to evaluate whether domesticated hosts

had a measurable effect on network interaction evenness. Within

each network, we simulated targeted removal of humans and domes-

tic animals (specifically chickens, dogs, cats, goats, cattle, horses, pigs,

and sheep) and compared this to removal of an equal number of ran-

domly selected host species, both domestic and non-domestic, repli-

cated 100 times. We then calculated the z-scores and compared the

observed network metric to the distribution of the simulated values.

The dataset used is not an exhaustive set of biting Diptera–host

interactions. Therefore to assess sampling completeness for each hab-

itat, we drew species interpolation and extrapolation curves for hosts,

biting Diptera and interactions as a function of sampling effort (the

number of blood meals analysed) using the iNEXT package (q = 0,

data type = incidence frequency) (Hsieh et al., 2016).

All data handling and analysis was conducted using R (version

4.01), and the bipartite (Dormann et al., 2008), iNEXT and tidyverse

(Wickham et al., 2019) packages. Figures were plotted using ggplot2,

iNEXT and bipartite.

RESULTS

In total, we compiled data for 9102 biting Diptera blood meals from

45 publications involving field sites in 27 countries (Figure 1a). An

aggregated global network contained 227 host species, 202 biting

Diptera species and 1121 links (Figure 1b). Based on these data,

47 quantitative bipartite networks were constructed from 14 Agricul-

tural (338 links), 18 Near-natural (461 links) and 15 Village/Urban

sites (322 links). Almost all (97%) of our networks comprised Diptera

species from a single family: Culicidae (24 cases), Ceratopogonidae

(12 cases), Glossinidae (4 cases), Psychodidae (4 cases) and Simuliidae

(2 cases). Sampling sites had a wide latitudinal distribution, ranging

from Sweden to South Africa (Figure 1a). Total host and Diptera spe-

cies richness were lower in Agricultural (65 and 64, respectively) than

Village/Urban (87 and 74), and Near-natural (140 and 115) habitats

(Figure 1c–e). We found no significant trend in host and biting Dip-

tera richness with latitude after controlling for sampling effort.

Accumulation curves showed that host and biting Diptera species

were well-resolved in Agricultural and Village/Urban habitats,

with curves approaching an asymptote in each case; host richness

in Near-natural habitats was less complete. Sampling of biting

(a) (b)

(c) (d)

F I GU R E 2 Interaction evenness by habitat type (a) and latitude (b), and H2’ specialisation by habitat type (c) and latitude (d). Interaction
evenness was significantly lower in Agricultural habitats. Each box displays the interquartile range and the solid line represents the median.
Whiskers display the maximum and minimum interaction evenness and H2’ values for each habitat type.
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Diptera–host interactions was incomplete for all levels of anthro-

pogenic landscape modification (Figure S1).

Influence of geographical and anthropogenic factors
on biting Diptera–host networks

Interaction evenness differed significantly among habitat types

(X2 = 0.068, df = 2, p = 0.042), but did not show a latitudinal trend

(X2 = 0. 001, df = 1, p = 0.968) (Figure 2b). Mean interaction even-

ness was significantly lower in Agricultural habitats (mean = 0.472,

SE = 0.026) than in both Village/Urban (mean = 0.576, SE = 0.023,

Tukey; p = 0.027) and Near-natural habitats (mean = 0.558,

SE = 0.027, Tukey; p = 0.040), but did not differ significantly

between Village/Urban and Near-natural habitats (Tukey; p = 0.943)

(Figure 2a). Species richness (X2 = 0.014, df = 1, p = 0.239), network

size (X2 = 0.023, df = 1, p = 0.147) and family (X2 = 0.063, df = 4,

p = 0.180) did not explain a significant amount of variance in interac-

tion evenness and there were no significant interactions between

family and habitat (X2 = 0.045, df = 5, p = 0.495) or family and lati-

tude (X2 = 0.026, df = 3, p = 0.475).

The average network specialisation (H2’) across our networks

was 0.395 (SD = 0.034). Neither latitude (X 2 = 0.114, df = 1,

p = 0.115) nor habitat (X 2 = 0.035, df = 1, p = 0.682) had a signifi-

cant influence on H2’ (Figure 2c,d). H2’ differed significantly among

Diptera families (X 2 = 0.429, df = 4, p = 0.030). Simuliidae-

dominated networks had the highest average H2’ (mean = 0.619),

followed by Ceratopogonidae (mean = 0.296) and Glossinidae

(mean = 0.127). There were no significant interactions between

family and habitat (X 2 = 0.207, df = 5, p = 0.391) or family and lati-

tude (X 2 = 0.207, df = 3, p = 0.242). There was a highly significant

decrease in H2’ (t = �2.875, df = 41, p = 0.006) with increasing

matrix size.

The influence of domesticated animals on interaction
evenness

Humans and domestic animals were involved in 2928 interactions

across Agricultural networks, of which 2653 were Diptera–bovine

interactions, involving 87 Diptera species from 5 families

(Ceratopogonidae, Glossinidae, Culicidae, Psychodidae and Simulii-

dae). Near-natural networks contained 1886 interactions involving

humans and domestic animals, and there were 1560 such interactions

in Village/Urban networks. There was no evidence that the presence

of domesticated animals and humans within networks led to altered

patterns of interaction evenness. Resampling networks to target

removal of these species did not lead to mean interaction evenness

values that differed from those generated when an equivalent number

of host species selected at random was removed: Agricultural

(mean = 0.721, n = 10, SE = 0.472), Village/Urban (mean = 0.696,

n = 7, SE = 0.434) and Near-natural (mean = 0.563, n = 16,

SE = 0.292) (Figure S2).

DISCUSSION

Overall, latitudinal trends in the structure of biting Diptera–host net-

work properties were dwarfed by the impact of anthropogenic habitat

modification. Neither network-level metric varied significantly with

latitude, but agricultural habitats had significantly lower interaction

evenness than Near-natural and Village/Urban habitats.

The absence of a latitudinal trend in feeding specialisation or

interaction evenness is counter to the expectation that high species

richness at low latitudes will be associated with increased dietary spe-

cialisation (Dyer et al., 2007). Turnover in genera of Diptera and hosts

was low across latitudes, perhaps explaining the consistency of inter-

specific interactions. Whilst Diptera families differ in degree of net-

work specialisation as judged by H2’, there was no significant

interaction between family and latitude. Consequently, the absence of

clear latitudinal trends in network structure, as also documented for

host–parasitoid networks (Morris et al., 2014), could result from

underlying rules for how these antagonistic interactions are struc-

tured, regardless of the diversity and size of component networks, or

their taxonomic composition. However, the apparent lack of a latitudi-

nal trend may also result from local climatic differences (e.g., rainfall)

among sites at similar latitudes masking latitudinal effects (Fischer

et al., 2022; Zhu et al., 2014).

The low levels of network specialisation (Agricultural mean

H2’ = 0.397, Village/Urban mean H2’ = 0.390, Near-Natural mean

H2’ = 0.398) may reflect plasticity in host choice and the wide global

distribution of suitable hosts. Host usage is characterised by a high

degree of plasticity in biting insects and may be strongly influenced by

host densities (Takken & Verhulst, 2013). For example, biting Diptera

that are commonly described as anthropophilic such as Anopheles

gambiae still interact with a range of domestic and non-domestic hosts

(Bellekom et al., 2021).

The low interaction evenness observed within Agricultural habi-

tats, in comparison to other habitat types, indicates that interactions

are dominated by relatively few species pairs, with a long tail of infre-

quently observed interactions. In Agricultural habitats, interactions

involving domestic animals and humans dominated the networks,

accounting for 81% of interactions, with cattle (51%) the most fre-

quent hosts. This may reflect the high biomass of domestic animals

(Lassen et al., 2012) in these habitats, and potentially the success and

dominance of anthropophilic and livestock-adapted biting Diptera

species. Approximately 70% of biting Diptera species in the Agricul-

tural networks fed predominantly (>50% of interactions) on humans

and domestic animals, whilst the remaining Diptera fed on either a

wider range of mammals and birds or had too few recorded blood

meals to assess their diets with confidence (Bellekom et al., 2021).

The minimal difference observed between our Agricultural model with

targeted removal of domestic hosts and the null model with random

removal may be explained by the high number of domestic hosts com-

pared with non-domestic hosts; random removal of hosts inevitably

results in the removal of domestic hosts.

We found little difference in interaction evenness between

Village/Urban and Near-natural environments, although sampling was

LATITUDINAL AND ANTHROPOGENIC EFFECTS 679
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less complete within Near-natural habitats. Despite an expected high

human host availability, the Village/Urban networks were not domi-

nated by interactions between humans and biting Diptera to the same

extent as Agricultural habitats were by biting Diptera–cattle interac-

tions. In Village/Urban habitats, 26% of interactions were with

humans, and we identified interactions with a wide range of other

taxa, predominantly birds and domesticated animals. Therefore,

high interaction evenness values within Village/Urban sites may

result from higher than expected generalism of biting Diptera

(Hassell et al., 2017) and the absence of dominating species pairs

(pairs with high abundance and interaction fidelity). In contrast,

network interaction structure in Agricultural habitats is strongly

influenced by the super-abundance of a single suitable host species

(cattle). Interaction evenness may therefore largely reflect host

species evenness; independent data on host abundances would be

required to test this.

For many taxa, specialist species are often more highly repre-

sented within pristine habitats, and are more susceptible to anthropo-

genic landscape modification and homogenisation than generalist

species (Devictor, Julliard, & Jiguet, 2008; Devictor, Julliard, Clavel,

et al., 2008; Sverdrup-Thygeson et al., 2017). Despite this, we did not

find differences in network specialism across levels of anthropogenic

landscape modification, perhaps because the same genera and often

the same species of biting Diptera were documented across habitat

types, leading to similar feeding patterns.

Ecological networks are often asymmetric, composed of few

strong interactions and a greater number of weak interactions

(Poulin, 2010). Therefore, nodes likely affect each other with differing

amounts of reciprocation, and the strength of an interaction is often

determined by the distribution of abundance of the component spe-

cies (Vázquez et al., 2007). Consequently, pairs of abundant species

may exhibit more symmetric, and reciprocally strong, effects on the

network than pairs of rare species (Dormann et al., 2017). Because

independent abundance data were lacking for nodes within the net-

works, we considered all interactions to be inherently equivalent, with

a normalised interaction strength of 1. These data limitations makes it

impossible to identify the relative dynamic importance of different

nodes. This is a common limitation in ecological network analyses of

other interaction types, such as pollination (Novella-Fernandez

et al., 2019) and herbivory (Neff et al., 2021), in which the influence

of each pollination visit or herbivory damage by different species is

considered of equivalent impact on a plant. Network metrics can be

sensitive to network size and species richness, leading to a risk that

trends in cross-network analyses reflect sampling differences,

rather than genuine ecological patterns (Dormann et al., 2009).

Heterogeneous data extracted from the literature are particularly

susceptible to such biases as a result of variations in methods,

sampling intensity and network dimensions (Prendergast & Ollerton,

2022; Xing & Fayle, 2021). Interaction evenness and network speciali-

sation are relatively robust to network size differences (Blüthgen

et al., 2006) and we included network size and species richness as

explanatory variables in statistical models to control for this potential

source of bias.

Agriculturally driven anthropogenic habitat modification, through

its effects on biting Diptera–host interaction evenness and network

specialism, could result in increased zoonotic disease transmission

potential (McDaniel et al., 2014). There was a very high number of bit-

ing Diptera–bovine interactions in our Agricultural networks, involving

a wide range of Diptera species from multiple families, many of which

are vector-competent. This may be of particular concern, since

bovine-related diseases such as Rift Valley fever, Animal African Try-

panosomosis (nagana) and Bluetongue disease have high morbidity

and mortality rates (Lopes et al., 2020; Rushton & Lyons, 2015;

Vreysen et al., 2013). The growing global demand for agriculture prod-

ucts will result in continued anthropogenic habitat modification, which

will provide increasing opportunities for pairwise interactions

between unfamiliar species, zoonotic transmission and the emergence

of novel zoonotic disease (Carlson et al., 2022). Surveillance of biting

Diptera–host networks, particularly at the interface of humans, wildlife

and domestic animals, could help identify pathways of zoonotic disease

transmission and help predict and mitigate future spill-over events.

Surveillance may be conducted through the routine sampling of the

Diptera community using a combination of trapping methods, such as

malaise traps, USA Center for Disease Control (CDC) miniature light

traps and Modified CDC Backpack Aspirators, Biogents’ Sentinel (BGS)

as well as trapping locations that limit accidental overrepresentation of

a species in order to minimise sources of bias (Bellekom et al., 2021;

Grubaugh et al., 2015; Gyawali et al., 2019; Rivera et al., 2021).
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Figure S1. Smoothed accumulation and extrapolation curves to assess

sampling completeness. Total numbers of hosts (triangle), biting Dip-

tera (circle), and interactions recorded in the whole dataset (square),

by habitat type: Agricultural (blue), Near-natural (red), and Village/

Urban (orange), as a function of sampling effort (the number of blood

meals screened).

Figure S2. Null model interaction evenness for each component net-

work, with empirical IE values (red squares), by habitat type: Agricul-

tural (a), Village/Urban (b), and Near-natural (c). Each grey box

displays the interquartile range, and the solid line represents the

median values for interaction evenness. Whiskers display the maxi-

mum and minimum interaction evenness for each network.
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